25,437 research outputs found
Structure of the Partition Function and Transfer Matrices for the Potts Model in a Magnetic Field on Lattice Strips
We determine the general structure of the partition function of the -state
Potts model in an external magnetic field, for arbitrary ,
temperature variable , and magnetic field variable , on cyclic, M\"obius,
and free strip graphs of the square (sq), triangular (tri), and honeycomb
(hc) lattices with width and arbitrarily great length . For the
cyclic case we prove that the partition function has the form ,
where denotes the lattice type, are specified
polynomials of degree in , is the corresponding
transfer matrix, and () for ,
respectively. An analogous formula is given for M\"obius strips, while only
appears for free strips. We exhibit a method for
calculating for arbitrary and give illustrative
examples. Explicit results for arbitrary are presented for
with and . We find very simple formulas
for the determinant . We also give results for
self-dual cyclic strips of the square lattice.Comment: Reference added to a relevant paper by F. Y. W
Partition Function Zeros of a Restricted Potts Model on Lattice Strips and Effects of Boundary Conditions
We calculate the partition function of the -state Potts model
exactly for strips of the square and triangular lattices of various widths
and arbitrarily great lengths , with a variety of boundary
conditions, and with and restricted to satisfy conditions corresponding
to the ferromagnetic phase transition on the associated two-dimensional
lattices. From these calculations, in the limit , we determine
the continuous accumulation loci of the partition function zeros in
the and planes. Strips of the honeycomb lattice are also considered. We
discuss some general features of these loci.Comment: 12 pages, 12 figure
Effect of nitrogen, phosphorous, potassium, plant growth regulator and artificial lodging on grain yield and grain quality of a landrace of barley
Landraces of different crops are still preferred due to their stable yields under low inputs and adverse climatic conditions to which most modern varieties are not adapted. In the UK, a landrace of barley called Bere is currently grown in extreme climatic conditions of Orkney to which most of the modern varieties are not adapted. Although this landrace is probably the oldest barley under cultivation in the UK, very little research has been conducted. In this paper the effects of nitrogen, phosphorous, potassium, plant growth regulator and artificial lodging on grain yield and quality of Bere were investigated in the Orkney\u27s short growing season. Higher nitrogen application resulted in a higher lodging incidence but grain yield was not reduced by the severity of lodging. The artificial lodging applied at Zadoks growth stage 77 resulted in the greatest yield losses which indicated that control measures may be required to avoid lodging at this critical growth stage. Phosphorous and potassium had no significant effect on lodging resistance. Whilst plant growth regulator improved lodging resistance it was less effective in controlling lodging at the highest nitrogen level (90 kg ha-1). The trials indicated that higher level of N caused marginal increase in grain yield when nitrogen level was raised from 45 kg to 90 kg ha-1. This tended to suggest the use of medium N-level (45 kg N ha-1) for producing Bere. Plant growth regulator increased lodging resistance but had an inconsistent effect on grain yield. This study recommended the use of plant growth regulator as a means of easing harvesting rather than for enhancing yield and quality. The study concluded that phosphorous and potassium could be used to improve disease resistance and grain yield but not for lodging control
The Higgs sector of the complex MSSM at two-loop order: QCD contributions
Results are presented for the leading two-loop contributions of O(alpha_t
alpha_s) to the masses and mixing effects in the Higgs sector of the MSSM with
complex parameters. They are obtained in the Feynman-diagrammatic approach
using on-shell renormalization. The full dependence on all complex phases is
taken into account. The renormalization of the appropriate contributions of the
Higgs-boson sector and the scalar top and bottom sector is discussed. Our
numerical analysis for the lightest MSSM Higgs-boson mass is based on the new
two-loop corrections, supplemented by the full one-loop result. The corrections
induced by the phase variation in the scalar top sector are enhanced by the
two-loop contributions. We find that the corresponding shift in M_h1 can amount
to 5 GeV.Comment: 15 pages, 7 figures; minor changes; published versio
Time-resolved spectroscopy of the primary photosynthetic processes of membrane-bound reaction centers from an antenna-deficient mutant of Rhodobacter capsulatus
The primary photosynthetic reactions in whole membranes of the antenna-deficient mutant strain U43 (pTXA6–10) of Rhodobacter capsulatus are studied by transient absorption and emission spectroscopy with subpicosecond time resolution. Extensive similarities between the transient absorption data on whole membranes and on isolated reaction centers support the idea that the primary processes in isolated reaction centers are not modified by the isolation procedure
Direct Measurement of the Top Quark Charge at Hadron Colliders
We consider photon radiation in tbar-t events at the upgraded Fermilab
Tevatron and the CERN Large Hadron Collider (LHC) as a tool to measure the
electric charge of the top quark. We analyze the contributions of tbar-t-gamma
production and radiative top quark decays to p-p, pbar-p -> gamma l^+/- nu
bbar-b jj, assuming that both b-quarks are tagged. With 20~fb^{-1} at the
Tevatron, the possibility that the ``top quark'' discovered in Run I is
actually an exotic charge -4/3 quark can be ruled out at the 95% confidence
level. At the LHC, it will be possible to determine the charge of the top quark
with an accuracy of about 10%.Comment: Revtex, 24 pages, 2 tables, 9 figure
Collective Quartics and Dangerous Singlets in Little Higgs
Any extension of the standard model that aims to describe TeV-scale physics
without fine-tuning must have a radiatively-stable Higgs potential. In little
Higgs theories, radiative stability is achieved through so-called collective
symmetry breaking. In this letter, we focus on the necessary conditions for a
little Higgs to have a collective Higgs quartic coupling. In one-Higgs doublet
models, a collective quartic requires an electroweak triplet scalar. In
two-Higgs doublet models, a collective quartic requires a triplet or singlet
scalar. As a corollary of this study, we show that some little Higgs theories
have dangerous singlets, a pathology where collective symmetry breaking does
not suppress quadratically-divergent corrections to the Higgs mass.Comment: 4 pages; v2: clarified the existing literature; v3: version to appear
in JHE
Testing SUSY
If SUSY provides a solution to the hierarchy problem then supersymmetric
states should not be too heavy. This requirement is quantified by a fine tuning
measure that provides a quantitative test of SUSY as a solution to the
hierarchy problem. The measure is useful in correlating the impact of the
various experimental measurements relevant to the search for supersymmetry and
also in identifying the most sensitive measurements for testing SUSY. In this
paper we apply the measure to the CMSSM, computing it to two-loop order and
taking account of current experimental limits and the constraint on dark matter
abundance. Using this we determine the present limits on the CMSSM parameter
space and identify the measurements at the LHC that are most significant in
covering the remaining parameter space. Without imposing the LEP Higgs mass
bound we show that the smallest fine tuning (1:13) consistent with a relic
density within the WMAP bound corresponds to a Higgs mass of 1142 GeV.
Fine tuning rises rapidly for heavier Higgs.Comment: 12 pages, 7 figures; references added, figures updated for extended
parameter space sca
Spin- and charge-density waves in the Hartree-Fock ground state of the two-dimensional Hubbard model
The ground states of the two-dimensional repulsive Hubbard model are studied
within the unrestricted Hartree-Fock (UHF) theory. Magnetic and charge
properties are determined by systematic, large-scale, exact numerical
calculations, and quantified as a function of electron doping . In the
solution of the self-consistent UHF equations, multiple initial configurations
and simulated annealing are used to facilitate convergence to the global
minimum. New approaches are employed to minimize finite-size effects in order
to reach the thermodynamic limit. At low to moderate interacting strengths and
low doping, the UHF ground state is a linear spin-density wave (l-SDW), with
antiferromagnetic order and a modulating wave. The wavelength of the modulating
wave is . Corresponding charge order exists but is substantially weaker
than the spin order, hence holes are mobile. As the interaction is increased,
the l-SDW states evolves into several different phases, with the holes
eventually becoming localized. A simple pairing model is presented with
analytic calculations for low interaction strength and small doping, to help
understand the numerical results and provide a physical picture for the
properties of the SDW ground state. By comparison with recent many-body
calculations, it is shown that, for intermediate interactions, the UHF solution
provides a good description of the magnetic correlations in the true ground
state of the Hubbard model.Comment: 13 pages, 17 figure, 0 table
Zeros of Jones Polynomials for Families of Knots and Links
We calculate Jones polynomials for several families of alternating
knots and links by computing the Tutte polynomials for the
associated graphs and then obtaining as a special case of the
Tutte polynomial. For each of these families we determine the zeros of the
Jones polynomial, including the accumulation set in the limit of infinitely
many crossings. A discussion is also given of the calculation of Jones
polynomials for non-alternating links.Comment: 30 pages, latex, 9 postscript figures; minor rewording on a
reference, no changes in result
- …
