3,614 research outputs found
Criminal Law: Customer’s Permanent Exclusion From Retail Store Due to Prior Shoplifting Arrests Held Enforceable Under Criminal Trespass Statute
In interpretive research, trustworthiness has developed to become an important alternative for measuring the value of research and its effects, as well as leading the way of providing for rigour in the research process. The article develops the argument that trustworthiness plays an important role in not only effecting change in a research project’s original setting, but also that trustworthy research contributes toward building a body of knowledge that can play an important role in societal change. An essential aspect in the development of this trustworthiness is its relationship to context. To deal with the multiplicity of meanings of context, we distinguish between contexts at different levels of the research project: the domains of the researcher, the collective, and the individual participant. Furthermore, we argue that depending on the primary purpose associated with the collective learning potential, critical potential, or performative potential of phenomenographic research, developing trustworthiness may take different forms and is related to aspects of pedagogical legitimacy, social legitimacy, and epistemological legitimacy. Trustworthiness in phenomenographic research is further analysed by distinguishing between the internal horizon – the constitution of trustworthiness as it takes place within the research project – and the external horizon, which points to the impact of the phenomenographic project in the world mediated by trustworthiness
Studies on the Cherenkov Effect for Improved Time Resolution of TOF-PET
With the newly gained interest in the time of flight method for positron
emission tomography (TOF-PET), many options for pushing the time resolution to
its borders have been investigated. As one of these options the exploitation of
the Cherenkov effect has been proposed, since it allows to bypass the
scintillation process and therefore provides almost instantaneous response to
incident 511keV annihilation photons. Our simulation studies on the yield of
Cherenkov photons, their arrival rate at the photon detector and their angular
distribution reveal a significant influence by Cherenkov photons on the rise
time of inorganic scintillators - a key-parameter for TOF in PET. A measurement
shows the feasibility to detect Cherenkov photons in this low energy range
Parton theory of magnetic polarons: Mesonic resonances and signatures in dynamics
When a mobile hole is moving in an anti-ferromagnet it distorts the
surrounding Neel order and forms a magnetic polaron. Such interplay between
hole motion and anti-ferromagnetism is believed to be at the heart of high-Tc
superconductivity in cuprates. We study a single hole described by the t-Jz
model with Ising interactions between the spins in 2D. This situation can be
experimentally realized in quantum gas microscopes. When the hole hopping is
much larger than couplings between the spins, we find strong evidence that
magnetic polarons can be understood as bound states of two partons, a spinon
and a holon carrying spin and charge quantum numbers respectively. We introduce
a microscopic parton description which is benchmarked by comparison with
results from advanced numerical simulations. Using this parton theory, we
predict a series of excited states that are invisible in the spectral function
and correspond to rotational excitations of the spinon-holon pair. This is
reminiscent of mesonic resonances observed in high-energy physics, which can be
understood as rotating quark antiquark pairs. We also apply the strong coupling
parton theory to study far-from equilibrium dynamics of magnetic polarons
observable in current experiments with ultracold atoms. Our work supports
earlier ideas that partons in a confining phase of matter represent a useful
paradigm in condensed-matter physics and in the context of high-Tc
superconductivity. While direct observations of spinons and holons in real
space are impossible in traditional solid-state experiments, quantum gas
microscopes provide a new experimental toolbox. We show that, using this
platform, direct observations of partons in and out-of equilibrium are
possible. Extensions of our approach to the t-J model are also discussed. Our
predictions in this case are relevant to current experiments with quantum gas
microscopes for ultracold atoms.Comment: 30 pages, 4 appendices, 26 figure
Time resolution below 100 ps for the SciTil detector of PANDA employing SiPM
The barrel time-of-flight (TOF) detector for the PANDA experiment at FAIR in
Darmstadt is planned as a scintillator tile hodoscope (SciTil) using 8000 small
scintillator tiles. It will provide fast event timing for a software trigger in
the otherwise trigger-less data acquisition scheme of PANDA, relative timing in
a multiple track event topology as well as additional particle identification
in the low momentum region. The goal is to achieve a time resolution of sigma ~
100 ps. We have conducted measurements using organic scintillators coupled to
Silicon Photomultipliers (SiPM). The results are encouraging such that we are
confident to reach the required time resolution.Comment: 10 pages, 7 figure
Multiple conducting carriers generated in LaAlO3/SrTiO3 heterostructures
We have found that there is more than one type of conducting carriers
generated in LaAlO3/SrTiO3 heterostructures by comparing the sheet carrier
density and mobility from optical transmission spectroscopy with those from
dc-transport measurements. When multiple types of carriers exist, optical
characterization dominantly reflects the contribution from the high-density
carriers whereas dc-transport measurements may exaggerate the contribution of
the high-mobility carriers even though they are present at low-density. Since
the low-temperature mobilities determined by dc-transport in the LaAlO3/SrTiO3
heterostructures are much higher than those extracted by optical method, we
attribute the origin of high-mobility transport to the low-density conducting
carriers.Comment: 3 figures, supplemental materia
Identification of Young Stellar Object candidates in the DR2 x AllWISE catalogue with machine learning methods
The second Data Release (DR2) contains astrometric and photometric
data for more than 1.6 billion objects with mean magnitude 20.7,
including many Young Stellar Objects (YSOs) in different evolutionary stages.
In order to explore the YSO population of the Milky Way, we combined the
DR2 database with WISE and Planck measurements and made an all-sky
probabilistic catalogue of YSOs using machine learning techniques, such as
Support Vector Machines, Random Forests, or Neural Networks. Our input
catalogue contains 103 million objects from the DR2xAllWISE cross-match table.
We classified each object into four main classes: YSOs, extragalactic objects,
main-sequence stars and evolved stars. At a 90% probability threshold we
identified 1,129,295 YSO candidates. To demonstrate the quality and potential
of our YSO catalogue, here we present two applications of it. (1) We explore
the 3D structure of the Orion A star forming complex and show that the spatial
distribution of the YSOs classified by our procedure is in agreement with
recent results from the literature. (2) We use our catalogue to classify
published Science Alerts. As measures the sources at multiple
epochs, it can efficiently discover transient events, including sudden
brightness changes of YSOs caused by dynamic processes of their circumstellar
disk. However, in many cases the physical nature of the published alert sources
are not known. A cross-check with our new catalogue shows that about 30% more
of the published alerts can most likely be attributed to YSO activity.
The catalogue can be also useful to identify YSOs among future alerts.Comment: 19 pages, 12 figures, 3 table
- …
