61 research outputs found
Magnetic polarons and magnetoresistance in EuB6
EuB6 is a low carrier density ferromagnet which exhibits large
magnetoresistance, positive or negative depending on temperature. The formation
of magnetic polarons just above the magnetic critical temperature has been
suggested by spin-flip Raman scattering experiments. We find that the fact that
EuB6 is a semimetal has to be taken into account to explain its electronic
properties, including magnetic polarons and magnetoresistance.Comment: 6 pages, 1 figur
Excitonic ferromagnetism in the hexaborides
A ferromagnet with a small spontaneous moment but with a high Curie
temperature can be obtained by doping an excitonic insulator made from a spin
triplet exciton condensate. Such a condensate can occur in a semimetal with a
small overlap or a semiconductor with a small bandgap. We propose that it is
responsible for the unexpected ferromagnetism in the doped hexaboride material
Ca_{1-x}La_xB_6.Comment: 4 pages, 3 figure
Weak Ferromagnetism and Excitonic Condensates
We investigate a model of excitonic ordering (i.e electron-hole pair
condensation) appropriate for the divalent hexaborides. We show that the
inclusion of imperfectly nested electron hole Fermi surfaces can lead to the
formation of an undoped excitonic metal phase. In addition, we find that weak
ferromagnetism with compensated moments arises as a result of gapless
excitations. We study the effect of the low lying excitations on the density of
states, Fermi surface topology and optical conductivity and compare to
available experimental data.Comment: 10 Pages, 8 Figures, RevTe
Theory of Ferromagnetism in Ca1-xLaxB6
Novel ferromagnetism in CaLaB is studied in terms of the
Ginzburg-Landau theory for excitonic order parameters, taking into account
symmetry of the wavefunctions. We found that the minima of the free energy
break both inversion and time-reversal symmetries, while the product of these
two remains preserved. This explains various novelties of the ferromagnetism
and predicts a number of magnetic properties, including the magnetoelectric
effect, which can be tested experimentally.Comment: 5 pages, accepted for publication in Phys.Rev.Let
Implementation of the LDA+U method using the full potential linearized augmented plane wave basis
We provide a straightforward and efficient procedure to combine LDA+U total
energy functional with the full potential linearized augmented plane wave
method. A detailed derivation of the LDA+U Kohn-Sham type equations is
presented for the augmented plane wave basis set, and a simple
``second-variation'' based procedure for self-consistent LDA+U calculations is
given. The method is applied to calculate electronic structure and magnetic
properties of NiO and Gd. The magnetic moments and band eigenvalues obtained
are in very good quantitative agreement with previous full potential LMTO
calculations. We point out that LDA+U reduces the total d charge on Ni by 0.1
in NiO
Coupling between planes and chains in YBa2Cu3O7 : a possible solution for the order parameter controversy
We propose to explain the contradictory experimental evidence about the
symmetry of the order parameter in by taking into account
the coupling between planes and chains. This leads to an anticrossing of the
plane and chain band. We include an attractive pairing interaction within the
planes and a repulsive one between planes and chains, leading to opposite signs
for the order parameter on planes and chains, and to nodes of the gap because
of the anticrossing. Our model blends s-wave and d-wave features, and provides
a natural explanation for all the contradictory experimentsComment: 13 pages, revtex, 2 uucoded figure
Electron self-trapping in intermediate-valent SmB6
SmB6 exhibits intermediate valence in the ground state and unusual behaviour
at low temperatures. The resistivity and the Hall effect cannot be explained
either by conventional sf-hybridization or by hopping transport in an impurity
band. At least three different energy scales determine three temperature
regimes of electron transport in this system. We consider the ground state
properties, the soft valence fluctuations and the spectrum of band carriers in
n-doped SmB6. The behaviour of excess conduction electrons in the presence of
soft valence fluctuations and the origin of the three energy scales in the
spectrum of elementary excitations is discussed. The carriers which determine
the low-temperature transport in this system are self-trapped electron-polaron
complexes rather than simply electrons in an impurity band. The mechanism of
electron trapping is the interaction with soft valence fluctuations.Comment: 12 pages, 3 figure
Theory of Orbital Kondo Effect with Assisted Hopping in Strongly Correlated Electron Systems: Parquet Equations, Superconductivity and Mass Enhancement
Orbital Kondo effect is treated in a model, where additional to the
conduction band there are localized orbitals close to the Fermi energy. If the
hopping between the conduction band and the localized heavy orbitals depends on
the occupation of the atomic orbitals in the conduction band then orbital Kondo
correlation occurs. The noncommutative nature of the coupling required for the
Kondo effect is formally due to the form factors associated with the assisted
hopping which in the momentum representation depends on the momenta of the
conduction electrons involved. The leading logarithmic vertex corrections are
due to the local Coulomb interaction between the electrons on the heavy orbital
and in the conduction band. The renormalized vertex functions are obtained as a
solution of a closed set of differential equations and they show power
behavior. The amplitude of large renormalization is determined by an infrared
cutoff due to finite energy and dispersion of the heavy particles. The enhanced
assisted hopping rate results in mass enhancement and attractive interaction in
the conduction band. The superconductivity transition temperature calculated is
largest for intermediate mass enhancement, . For larger mass
enhancement the small one particle weight () in the Green's function reduces
the transition temperature which may be characteristic for otherComment: 32 pages, RevTeX 3.0, figures on reques
Surprises in the doping dependence of the Fermi surface in Bi(Pb)-2212
A detailed and systematic ARPES investigation of the doping-dependence of the
normal state Fermi surface (FS) of modulation-free (Pb,Bi)-2212 is presented.
The FS does not change in topology away from hole-like at any stage. The data
reveal, in addition, a number of surprises. Firstly the FS area does not follow
the usual curve describing Tc vs x for the hole doped cuprates, but is
down-shifted in doping by ca. 0.05 holes per Cu site, indicating either the
break-down of Luttinger's theorem or the consequences of a significant bi-layer
splitting of the FS. Secondly, the strong k-dependence of the FS width is shown
to be doping independent. Finally, the relative strength of the shadow FS has a
doping dependence mirroring that of Tc.Comment: 5 pages, 4 figures (revtex
Doping dependence of the many-body effects along the nodal direction in the high-Tc cuprate (Bi,Pb)_2Sr_2CaCu_2O_8
Angle-resolved photoemission spectroscopy (ARPES) is used to study the doping
dependence of the lifetime and the mass renormalization of the low energy
excitations in the high-Tc cuprate (Bi,Pb)_2Sr_2CaCu_2O_8 along the zone
diagonal. We find a linear energy de-pendence of the scattering rate for the
underdoped samples and a quadratic energy depend-ence in the overdoped case.
The mass enhancement of the quasiparticles due to the many body effects at the
Fermi energy is found to be in the order of 2 and the renormalization extends
over a large energy range for both the normal and the superconducting state.
The much discussed kink in the dispersion around 70 meV is interpreted as a
small additional effect at low temperatures.Comment: 12 pages, 3 figure
- …
