11,444 research outputs found
Flow field computations for blunt bodies in planetary environments
Numerical analysis on flow distribution around hypersonic blunt body in planetary atmospher
Visual motion processing and human tracking behavior
The accurate visual tracking of a moving object is a human fundamental skill
that allows to reduce the relative slip and instability of the object's image
on the retina, thus granting a stable, high-quality vision. In order to
optimize tracking performance across time, a quick estimate of the object's
global motion properties needs to be fed to the oculomotor system and
dynamically updated. Concurrently, performance can be greatly improved in terms
of latency and accuracy by taking into account predictive cues, especially
under variable conditions of visibility and in presence of ambiguous retinal
information. Here, we review several recent studies focusing on the integration
of retinal and extra-retinal information for the control of human smooth
pursuit.By dynamically probing the tracking performance with well established
paradigms in the visual perception and oculomotor literature we provide the
basis to test theoretical hypotheses within the framework of dynamic
probabilistic inference. We will in particular present the applications of
these results in light of state-of-the-art computer vision algorithms
Motion clouds: model-based stimulus synthesis of natural-like random textures for the study of motion perception
Choosing an appropriate set of stimuli is essential to characterize the
response of a sensory system to a particular functional dimension, such as the
eye movement following the motion of a visual scene. Here, we describe a
framework to generate random texture movies with controlled information
content, i.e., Motion Clouds. These stimuli are defined using a generative
model that is based on controlled experimental parametrization. We show that
Motion Clouds correspond to dense mixing of localized moving gratings with
random positions. Their global envelope is similar to natural-like stimulation
with an approximate full-field translation corresponding to a retinal slip. We
describe the construction of these stimuli mathematically and propose an
open-source Python-based implementation. Examples of the use of this framework
are shown. We also propose extensions to other modalities such as color vision,
touch, and audition
Accuracy of magnetic energy computations
For magnetically driven events, the magnetic energy of the system is the
prime energy reservoir that fuels the dynamical evolution. In the solar
context, the free energy is one of the main indicators used in space weather
forecasts to predict the eruptivity of active regions. A trustworthy estimation
of the magnetic energy is therefore needed in three-dimensional models of the
solar atmosphere, eg in coronal fields reconstructions or numerical
simulations. The expression of the energy of a system as the sum of its
potential energy and its free energy (Thomson's theorem) is strictly valid when
the magnetic field is exactly solenoidal. For numerical realizations on a
discrete grid, this property may be only approximately fulfilled. We show that
the imperfect solenoidality induces terms in the energy that can lead to
misinterpreting the amount of free energy present in a magnetic configuration.
We consider a decomposition of the energy in solenoidal and nonsolenoidal parts
which allows the unambiguous estimation of the nonsolenoidal contribution to
the energy. We apply this decomposition to six typical cases broadly used in
solar physics. We quantify to what extent the Thomson theorem is not satisfied
when approximately solenoidal fields are used. The quantified errors on energy
vary from negligible to significant errors, depending on the extent of the
nonsolenoidal component. We identify the main source of errors and analyze the
implications of adding a variable amount of divergence to various solenoidal
fields. Finally, we present pathological unphysical situations where the
estimated free energy would appear to be negative, as found in some previous
works, and we identify the source of this error to be the presence of a finite
divergence. We provide a method of quantifying the effect of a finite
divergence in numerical fields, together with detailed diagnostics of its
sources
The relativistic solar particle event of 2005 January 20: origin of delayed particle acceleration
The highest energies of solar energetic nucleons detected in space or through
gamma-ray emission in the solar atmosphere are in the GeV range. Where and how
the particles are accelerated is still controversial. We search for
observational information on the location and nature of the acceleration
region(s) by comparing the timing of relativistic protons detected on Earth and
radiative signatures in the solar atmosphere during the particularly
well-observed 2005 Jan. 20 event. This investigation focuses on the
post-impulsive flare phase, where a second peak was observed in the
relativistic proton time profile by neutron monitors. This time profile is
compared in detail with UV imaging and radio spectrography over a broad
frequency band from the low corona to interplanetary space. It is shown that
the late relativistic proton release to interplanetary space was accompanied by
a distinct new episode of energy release and electron acceleration in the
corona traced by the radio emission and by brightenings of UV kernels. These
signatures are interpreted in terms of magnetic restructuring in the corona
after the coronal mass ejection passage. We attribute the delayed relativistic
proton acceleration to magnetic reconnection and possibly to turbulence in
large-scale coronal loops. While Type II radio emission was observed in the
high corona, no evidence of a temporal relationship with the relativistic
proton acceleration was found
Flux rope, hyperbolic flux tube, and late EUV phases in a non-eruptive circular-ribbon flare
We present a detailed study of a confined circular flare dynamics associated
with 3 UV late phases in order to understand more precisely which topological
elements are present and how they constrain the dynamics of the flare. We
perform a non-linear force free field extrapolation of the confined flare
observed with the HMI and AIA instruments onboard SDO. From the 3D magnetic
field we compute the squashing factor and we analyse its distribution.
Conjointly, we analyse the AIA EUV light curves and images in order to identify
the post-flare loops, their temporal and thermal evolution. By combining both
analysis we are able to propose a detailed scenario that explains the dynamics
of the flare. Our topological analysis shows that in addition to a null-point
topology with the fan separatrix, the spine lines and its surrounding
Quasi-Separatix Layers halo (typical for a circular flare), a flux rope and its
hyperbolic flux tube (HFT) are enclosed below the null. By comparing the
magnetic field topology and the EUV post-flare loops we obtain an almost
perfect match 1) between the footpoints of the separatrices and the EUV
1600~\AA{} ribbons and 2) between the HFT's field line footpoints and bright
spots observed inside the circular ribbons. We showed, for the first time in a
confined flare, that magnetic reconnection occured initially at the HFT, below
the flux rope. Reconnection at the null point between the flux rope and the
overlying field is only initiated in a second phase. In addition, we showed
that the EUV late phase observed after the main flare episode are caused by the
cooling loops of different length which have all reconnected at the null point
during the impulsive phase.Comment: Astronomy & Astrophysics, in pres
Evidential Communities for Complex Networks
Community detection is of great importance for understand-ing graph structure
in social networks. The communities in real-world networks are often
overlapped, i.e. some nodes may be a member of multiple clusters. How to
uncover the overlapping communities/clusters in a complex network is a general
problem in data mining of network data sets. In this paper, a novel algorithm
to identify overlapping communi-ties in complex networks by a combination of an
evidential modularity function, a spectral mapping method and evidential
c-means clustering is devised. Experimental results indicate that this
detection approach can take advantage of the theory of belief functions, and
preforms good both at detecting community structure and determining the
appropri-ate number of clusters. Moreover, the credal partition obtained by the
proposed method could give us a deeper insight into the graph structure
Experimental study of the turbulent structure of a boundary layer developing over a rough surface
National audienceNous avons analysé les caractéristiques turbulentes de la couche limite neutre se développant sur une surface rugueuse. Des expériences ont été réalisées dans un canal hydraulique pour mesurer les champs bidimensionnels de vitesse via la technique de Particle Image Velocimetry (PIV). Ces données expérimentales décrivent cette couche limite en termes de quantités moyennes et turbulentes avec un haut niveau de précision. Les termes des budgets d'énergie ont ainsi pu être estimés. Il apparait que le développement de la couche limite rugueuse ne modifie pas significativement la répartition entre les termes constitutifs des différents bilans. Les échelles de longueurs intégrales ont été estimées, de manière directe, à partir des corrélations spatiales. Ces échelles de longueurs verticales permettent alors de paramétrer les longueurs de mélange et de dissipation, utilisées dans des modèles 1D de prédiction. / We analysed the turbulent characteristics of the neutral boundary-layer developing over rough surfaces. A set of hydraulic flume experiments were carried out in order to measure two-dimensional velocity fields via a particle image velocimetry (PIV) technique. The resulting experimental data describe this boundary layer in terms of the mean and turbulent quantities with a high level of accuracy. These results enabled the terms of the energy budgets to be estimated and show that the development of the rough neutral boundary layer does not significantly modify the repartition between the constitutive terms of the different budget. Spatial correlation analysis permitted the longitudinal and vertical integral length also to be estimated directly. Theses vertical length scales are then used to parametrize the mixing and dissipative lengths, used in 1D prediction models
A Model for SEP Escape
Magnetic reconnection in the solar atmosphere is believed to be the driver of most solar explosive phenomena. Therefore, the topology of the coronal magnetic field is central to understanding the solar drivers of space weather. Of particular importance to space weather are the impulsive Solar Energetic particles that are associated with some CME/eruptive flare events. Observationally, the magnetic configuration of active regions where solar eruptions originate appears to agree with the standard eruptive flare model. According to this model, particles accelerated at the flare reconnection site should remain trapped in the corona and the ejected plasmoid. However, flare-accelerated particles frequently reach the Earth long before the CME does. We present a model that may account for the injection of energetic particles onto open magnetic flux tubes connecting to the Earth. Our model is based on the well-known 2.5D breakout topology, which has a coronal null point (null line) and a four-flux system. A key new addition, however, is that we include an isothermal solar wind with open-flux regions. Depending on the location of the open flux with respect to the null point, we find that the flare reconnection can consist of two distinct phases. At first, the flare reconnection involves only closed field, but if the eruption occurs close to the open field, we find a second phase involving interchange reconnection between open and closed. We argue that this second reconnection episode is responsible for the injection of flare-accelerated particles into the interplanetary medium. We will report on our recent work toward understanding how flare particles escape to the heliosphere. This work uses high-resolution 2.5D MHD numerical simulations performed with the Adaptively Refined MHD Solver (ARMS)
Formation of a rotating jet during the filament eruption on 10-11 April 2013
We analyze multi-wavelength and multi-viewpoint observations of a helically
twisted plasma jet formed during a confined filament eruption on 10-11 April
2013. Given a rather large scale event with its high spatial and temporal
resolution observations, it allows us to clearly understand some new physical
details about the formation and triggering mechanism of twisting jet. We
identify a pre-existing flux rope associated with a sinistral filament, which
was observed several days before the event. The confined eruption of the
filament within a null point topology, also known as an Eiffel tower (or
inverted-Y) magnetic field configuration results in the formation of a twisted
jet after the magnetic reconnection near a null point. The sign of helicity in
the jet is found to be the same as that of the sign of helicity in the
filament. Untwisting motion of the reconnected magnetic field lines gives rise
to the accelerating plasma along the jet axis. The event clearly shows the
twist injection from the pre-eruptive magnetic field to the jet.Comment: 14 pages, 12 figures, to appear in MNRA
- …
