859 research outputs found
Superconductivity in Tetragonal LaPt_{2-x}Ge_{2+x}
We find that a tetragonal CaBe_2Ge_2-type structure can be stabilized in
non-stoichiometric LaPt_{2-x}Ge_{2+x}. We further discovered that tetragonal
LaPt_{2-x}Ge_{2+x} with x=0.15 and 0.2 respectively superconduct at Tc=1.85 K
and 1.95 K, which is about four time higher than that in monoclinic LaPt_2Ge_2.Comment: 6 pages, 4 figure
Anisotropic spin fluctuations and multiple superconducting gaps in hole-doped Ba_0.7K_0.3Fe_2As_2: NMR in a single crystal
We report the first ^{75}As-NMR study on a single crystal of the hole-doped
iron-pnictide superconductor Ba_{0.7}K_{0.3}Fe_2As_{2} (T_c = 31.5 K). We find
that the Fe antiferromagnetic spin fluctuations are anisotropic and are weaker
compared to underdoped copper-oxides or cobalt-oxide superconductors. The spin
lattice relaxation rate 1/T_1 decreases below T_c with no coherence peak and
shows a step-wise variation at low temperatures, which is indicative of
multiple superconducting gaps, as in the electron-doped
Pr(La)FeAsOF. Furthermore, no evidence was obtained for a
microscopic coexistence of a long-range magnetic and superconductivity
Spin-singlet superconductivity with a full gap in locally non-centrosymmetric SrPtAs
We report Pt-NMR and As-NQR measurements for the locally
non-centrosymmetric superconductor SrPtAs where the As-Pt layer breaks
inversion symmetry while globally the compound is centrosymmetric. The nuclear
spin lattice relaxation rate shows a well-defined coherence peak below
and decreases exponentially at low temperatures. The spin susceptibility
measured by the Knight shift also decreases below down to .
These data together with the penetration depth obtained from the NMR spectra
can be consistently explained by assuming a spin-singlet superconducting state
with a full gap. Our results suggest that the spin-orbit coupling due to the
local inversion-breaking is not large enough to bring about an exotic
superconducting state, or the inter-layer hopping interaction is larger than
the spin-orbit coupling.Comment: 10 pages, 6 figures. Accepted in Phys. Rev. B (Rapid Commun.
Pressure-induced unconventional superconductivity near a quantum critical point in CaFe2As2
75As-zero-field nuclear magnetic resonance (NMR) and nuclear quadrupole
resonance (NQR) measurements are performed on CaFe2As2 under pressure. At P =
4.7 and 10.8 kbar, the temperature dependences of nuclear-spin-lattice
relaxation rate (1/T1) measured in the tetragonal phase show no coherence peak
just below Tc(P) and decrease with decreasing temperature. The
superconductivity is gapless at P = 4.7 kbar but evolves to that with multiple
gaps at P = 10.8 kbar. We find that the superconductivity appears near a
quantum critical point under pressures in the range 4.7 kbar < P < 10.8 kbar.
Both electron correlation and superconductivity disappear in the collapsed
tetragonal phase. A systematic study under pressure indicates that electron
correlations play a vital role in forming Cooper pairs in this compound.Comment: 5pages, 5figure
Hydration-induced anisotropic spin fluctuations in Na_{x}CoO_{2}\cdot1.3H_{2}O superconductor
We report ^{59}Co NMR studies in single crystals of cobalt oxide
superconductor Na_{0.42}CoO_{2}\cdot1.3H_{2}O (T_c=4.25K) and its parent
compound Na_{0.42}CoO_{2}. We find that both the magnitude and the temperature
(T) dependence of the Knight shifts are identical in the two compounds above
T_c. The spin-lattice relaxation rate (1/T_1) is also identical above T_0
\sim60 K for both compounds. Below T_0, the unhydrated sample is found to be a
non-correlated metal that well conforms to Fermi liquid theory, while spin
fluctuations develop in the superconductor. These results indicate that water
intercalation does not change the density of states but its primary role is to
bring about spin fluctuations. Our result shows that, in the hydrated
superconducting compound, the in-plane spin fluctuation around finite wave
vector is much stronger than that along the c-axis, which indicates that the
spin correlation is quasi-two-dimensional.Comment: 4 pages, 5 figure
Pressure dependence of the superconducting transition and electron correlations in Na_xCoO_2 \cdot 1.3H_2O
We report T_c and ^{59}Co nuclear quadrupole resonance (NQR) measurements on
the cobalt oxide superconductor Na_{x}CoO_{2}\cdot 1.3H_{2}O (T_c=4.8 K) under
hydrostatic pressure (P) up to 2.36 GPa. T_c decreases with increasing pressure
at an average rate of -0.49\pm0.09 K/GPa. At low pressures P\leq0.49 GPa, the
decrease of T_c is accompanied by a weakening of the spin correlations at a
finite wave vector and a reduction of the density of states (DOS) at the Fermi
level. At high pressures above 1.93 GPa, however, the decrease of T_c is mainly
due to a reduction of the DOS. These results indicate that the
electronic/magnetic state of Co is primarily responsible for the
superconductivity. The spin-lattice relaxation rate 1/T_1 at P=0.49 GPa shows a
T^3 variation below T_c down to T\sim 0.12T_c, which provides compelling
evidence for the presence of line nodes in the superconducting gap function.Comment: published on 19, Sept. 2007 on Phys. Rev.
59-Co and 75-As NMR Investigation of Electron-Doped High Tc Superconductor BaFe(1.8)Co(0.2)As(2) (Tc = 22K)
We report an NMR investigation of the superconductivity in BaFe(2)As(2)
induced by Co doping (Tc=22K). We demonstrate that Co atoms form an alloy with
Fe atoms and donate carriers without creating localized moments. Our finding
strongly suggests that the underlying physics of iron-pnictide superconductors
is quite different from the widely accepted physical picture of high Tc
cuprates as doped Mott insulators. We also show a crossover of electronic
properties into a low temperature pseudo-gap phase with a pseudo-gap Delta
560K, where chi(spin) constant and resisitivty T. The NMR Knight shift below Tc
decreases for both along the c-axis and ab-plane, and is consistent with the
singlet pairing scenario.Comment: Accepted for publication in J. Phys. Soc. Jpn. (4 pages
Multiple superconducting gap and anisotropic spin fluctuations in iron arsenides: Comparison with nickel analog
We present extensive 75As NMR and NQR data on the superconducting arsenides
PrFeAs0.89F0.11 (Tc=45 K), LaFeAsO0.92F0.08 (Tc=27 K), LiFeAs (Tc = 17 K) and
Ba0.72K0.28Fe2As2 (Tc = 31.5 K) single crystal, and compare with the nickel
analog LaNiAsO0.9F0.1 (Tc=4.0 K) . In contrast to LaNiAsO0.9F0.1 where the
superconducting gap is shown to be isotropic, the spin lattice relaxation rate
1/T1 in the Fe-arsenides decreases below Tc with no coherence peak and shows a
step-wise variation at low temperatures. The Knight shift decreases below Tc
and shows a step-wise T variation as well. These results indicate spinsinglet
superconductivity with multiple gaps in the Fe-arsenides. The Fe
antiferromagnetic spin fluctuations are anisotropic and weaker compared to
underdoped copper-oxides or cobalt-oxide superconductors, while there is no
significant electron correlations in LaNiAsO0.9F0.1. We will discuss the
implications of these results and highlight the importance of the Fermi surface
topology.Comment: 6 pages, 11 figure
- …
