4,540 research outputs found
The Deepest Radio Study of the Pulsar Wind Nebula G21.5-0.9: Still No Evidence for the Supernova Shell
We report on sensitive new 1.4-GHz VLA radio observations of the pulsar wind
nebula G21.5-0.9, powered by PSR J1833-1034, and its environs. Our observations
were targeted at searching for the radio counterpart of the shell-like
structure seen surrounding the pulsar wind nebula in X-rays. Some such radio
emission might be expected as the ejecta from the <~ 1000 yr old supernova
expand and interact with the surrounding medium. We find, however, no radio
emission from the shell, and can place a conservative 3-sigma upper limit on
its 1-GHz surface brightness of 7 x 10^-22 W/m^2/Hz/sr, comparable to the
lowest limits obtained for radio emission from shells around other pulsar-wind
nebulae. Our widefield radio image also shows the presence of two extended
objects of low-surface brightness. We re-examine previous 327-MHz images, on
which both the new objects are visible. We identify the first, G21.64-0.84, as
a new shell-type supernova remnant, with a diameter of ~13' and an unusual
double-shell structure. The second, G21.45-0.59, ~1' in diameter, is likely an
HII region.Comment: 8 Pages, submitted to MNRA
Exploring the Structure of Distant Galaxies with Adaptive Optics on the Keck-II Telescope
We report on the first observation of cosmologically distant field galaxies
with an high order Adaptive Optics (AO) system on an 8-10 meter class
telescope. Two galaxies were observed at 1.6 microns at an angular resolution
as high as 50 milliarcsec using the AO system on the Keck-II telescope. Radial
profiles of both objects are consistent with those of local spiral galaxies and
are decomposed into a classic exponential disk and a central bulge. A
star-forming cluster or companion galaxy as well as a compact core are detected
in one of the galaxies at a redshift of 0.37+/-0.05. We discuss possible
explanations for the core including a small bulge, a nuclear starburst, or an
active nucleus. The same galaxy shows a peak disk surface brightness that is
brighter than local disks of comparable size. These observations demonstrate
the power of AO to reveal details of the morphology of distant faint galaxies
and to explore galaxy evolution.Comment: 5 pages, Latex, 3 figures. Accepted for publication in P.A.S.
Recommended from our members
CO and CI maps of the starburst galaxy M82
The first map of an external galaxy in the 3P₁ - 3P0 fine-structure line of atomic carbon (CI) is presented towards the nucleus of the starbuster M82, and compared with the distinction of the CO J = 4 - 3 molecular emission. The CI traces features that are seen in lower transition CO maps, and shows that CI and the CO are well mixed and have similar spatial distributions. There are small differences between the CO J = 4 - 3 line and lower transition CO data towards the NE part of the molecular ring, where the emission is less prominent. The abundance ratio [CI]/[CO] across M82 is very high, with an average value ~ 0.5 across most of the nucleus, a factor at least 5 times that which is typical of dense molecular cloud cores seen in our own Galaxy. This means that on average, CI is overabundant towards M82. This result can be explained using models which provide enhancements to the CI abundance above normal Interstellar Medium values, a result of a greater cosmic ray flux in M82, or where there is substantial mixing of the gas
Spectroscopy of High-Redshift Supernovae from the ESSENCE Project: The First Four Years
We present the results of spectroscopic observations from the ESSENCE
high-redshift supernova (SN) survey during its first four years of operation.
This sample includes spectra of all SNe Ia whose light curves were presented by
Miknaitis et al. (2007) and used in the cosmological analyses of Davis et al.
(2007) and Wood-Vasey et al. (2007). The sample represents 273 hours of
spectroscopic observations with 6.5 - 10-m-class telescopes of objects detected
and selected for spectroscopy by the ESSENCE team. We present 174 spectra of
156 objects. Combining this sample with that of Matheson et al. (2005), we have
a total sample of 329 spectra of 274 objects. From this, we are able to
spectroscopically classify 118 Type Ia SNe. As the survey has matured, the
efficiency of classifying SNe Ia has remained constant while we have observed
both higher-redshift SNe Ia and SNe Ia farther from maximum brightness.
Examining the subsample of SNe Ia with host-galaxy redshifts shows that
redshifts derived from only the SN Ia spectra are consistent with redshifts
found from host-galaxy spectra. Moreover, the phases derived from only the SN
Ia spectra are consistent with those derived from light-curve fits. By
comparing our spectra to local templates, we find that the rate of objects
similar to the overluminous SN 1991T and the underluminous SN 1991bg in our
sample are consistent with that of the local sample. We do note, however, that
we detect no object spectroscopically or photometrically similar to SN 1991bg.
Although systematic effects could reduce the high-redshift rate we expect based
on the low-redshift surveys, it is possible that SN 1991bg-like SNe Ia are less
prevalent at high redshift.Comment: 21 pages, 17 figures, accepted to A
Protein folding rates correlate with heterogeneity of folding mechanism
By observing trends in the folding kinetics of experimental 2-state proteins
at their transition midpoints, and by observing trends in the barrier heights
of numerous simulations of coarse grained, C-alpha model, Go proteins, we show
that folding rates correlate with the degree of heterogeneity in the formation
of native contacts. Statistically significant correlations are observed between
folding rates and measures of heterogeneity inherent in the native topology, as
well as between rates and the variance in the distribution of either
experimentally measured or simulated phi-values.Comment: 11 pages, 3 figures, 1 tabl
- …
