2,131 research outputs found
Effects of miRNA-15 and miRNA-16 expression replacement in chronic lymphocytic leukemia : implication for therapy
This work was supported by: Associazione Italiana Ricerca sul Cancro (AIRC) Grant 5 x mille n.9980, (to M.F., F.M. A. N., P.T. and M.N.) ; AIRC I.G. n. 14326 (to M.F.), n.10136 and 16722 (A.N.), n.15426 (to F.F.). AIRC and Fondazione CaRiCal co-financed Multi Unit Regional Grant 2014 n.16695 (to F.M.). Italian Ministry of Health 5x1000 funds (to S.Z. and F.F). A.G R. was supported by Associazione Italiana contro le Leucemie-Linfomi-Mielomi (AIL) Cosenza - Fondazione Amelia Scorza (FAS). S.M. C.M., M.C., L.E., S.B. were supported by AIRC.Peer reviewedPostprin
Recommended from our members
Sensor development and readout prototyping for the STAR Pixel detector
The STAR experiment at the Relativistic Heavy Ion Collider (RHIC) is designing a new vertex detector. The purpose of this upgrade detector is to provide high resolution pointing to allow for the direct topological reconstruction of heavy flavor decays such as the D{sup 0} by finding vertices displaced from the collision vertex by greater than 60 microns. We are using Monolithic Active Pixel Sensor (MAPS) as the sensor technology and have a coupled sensor development and readout system plan that leads to a final detector with a <200 {micro}s integration time, 400 M pixels and a coverage of -1 < {eta} < 1. We present our coupled sensor and readout development plan and the status of the prototyping work that has been accomplished
Dielectron Cross Section Measurements in Nucleus-Nucleus Reactions at 1.0 A GeV
We present measured dielectron production cross sections for Ca+Ca, C+C,
He+Ca, and d+Ca reactions at 1.0 A GeV. Statistical uncertainties and
systematic effects are smaller than in previous DLS nucleus-nucleus data. For
pair mass < 0.35 GeV/c2 : 1) the Ca+Ca cross section is larger than the
previous DLS measurement and current model results, 2) the mass spectra suggest
large contributions from pi0 and eta Dalitz decays, and 3) dsigma/dM is
proportional to ApAt. For M > 0.5 GeV/c2 the Ca+Ca to C+C cross section ratio
is significantly larger than the ratio of ApAt values.Comment: Submitted to Physical Review Letters. Further analysis information
will be posted on our web pages -- http://macdls.lbl.gov Figure 1 has been
redrawn to make more legible. Text modified to support redrawn figur
Inclusive Dielectron Cross Sections in p+p and p+d Interactions at Beam Energies from 1.04 to 4.88 GeV
Measurements of dielectron production in p+p and p+d collisions with beam
kinetic energies from 1.04 to 4.88 GeV are presented. The differential cross
section is presented as a function of invariant pair mass, transverse momentum,
and rapidity. The shapes of the mass spectra and their evolution with beam
energy provide information about the relative importance of the various
dielectron production mechanisms in this energy regime. The p+d to p+p ratio of
the dielectron yield is also presented as a function of invariant pair mass,
transverse momentum, and rapidity. The shapes of the transverse momentum and
rapidity spectra from the p+d and p+p systems are found to be similar to one
another for each of the beam energies studied. The beam energy dependence of
the integrated cross sections is also presented.Comment: 15 pages and 16 figure
Local correlations in a strongly interacting 1D Bose gas
We develop an analytical method for calculating local correlations in
strongly interacting 1D Bose gases, based on the exactly solvable Lieb-Liniger
model. The results are obtained at zero and finite temperatures. They describe
the interaction-induced reduction of local many-body correlation functions and
can be used for achieving and identifying the strong-coupling Tonks-Girardeau
regime in experiments with cold Bose gases in the 1D regime.Comment: 8 pages, REVTeX4, published in the New Journal of Physic
The energy dependence of flow in Ni induced collisions from 400 to 1970A MeV
We study the energy dependence of collective (hydrodynamic-like) nuclear
matter flow in 400-1970 A MeV Ni+Au and 1000-1970 A MeV Ni+Cu reactions. The
flow increases with energy, reaches a maximum, and then gradually decreases at
higher energies. A way of comparing the energy dependence of flow values for
different projectile-target mass combinations is introduced, which demonstrates
a common scaling behaviour among flow values from different systems.Comment: 12 pages, 3 figures. Submitted to Physical Review Letter
The IceCube Neutrino Observatory: Instrumentation and Online Systems
The IceCube Neutrino Observatory is a cubic-kilometer-scale high-energy
neutrino detector built into the ice at the South Pole. Construction of
IceCube, the largest neutrino detector built to date, was completed in 2011 and
enabled the discovery of high-energy astrophysical neutrinos. We describe here
the design, production, and calibration of the IceCube digital optical module
(DOM), the cable systems, computing hardware, and our methodology for drilling
and deployment. We also describe the online triggering and data filtering
systems that select candidate neutrino and cosmic ray events for analysis. Due
to a rigorous pre-deployment protocol, 98.4% of the DOMs in the deep ice are
operating and collecting data. IceCube routinely achieves a detector uptime of
99% by emphasizing software stability and monitoring. Detector operations have
been stable since construction was completed, and the detector is expected to
operate at least until the end of the next decade.Comment: 83 pages, 50 figures; updated with minor changes from journal review
and proofin
Strangelet search at RHIC
Two position sensitive Shower Maximum Detector (SMDs) for Zero-Degree
Calorimeters (ZDCs) were installed by STAR before run 2004 at both upstream and
downstream from the interaction point along the beam axis where particles with
small rigidity are swept away by strong magnetic field. The ZDC-SMDs provides
information about neutral energy deposition as a function of transverse
position in ZDCs. We report the preliminary results of strangelet search from a
triggered data-set sampling 100 million Au+Au collisions at top RHIC energy.Comment: Strange Quark Matter 2004 conference proceedin
Search for Point Sources of High Energy Neutrinos with AMANDA
This paper describes the search for astronomical sources of high-energy
neutrinos using the AMANDA-B10 detector, an array of 302 photomultiplier tubes,
used for the detection of Cherenkov light from upward traveling
neutrino-induced muons, buried deep in ice at the South Pole. The absolute
pointing accuracy and angular resolution were studied by using coincident
events between the AMANDA detector and two independent telescopes on the
surface, the GASP air Cherenkov telescope and the SPASE extensive air shower
array. Using data collected from April to October of 1997 (130.1 days of
livetime), a general survey of the northern hemisphere revealed no
statistically significant excess of events from any direction. The sensitivity
for a flux of muon neutrinos is based on the effective detection area for
through-going muons. Averaged over the Northern sky, the effective detection
area exceeds 10,000 m^2 for E_{mu} ~ 10 TeV. Neutrinos generated in the
atmosphere by cosmic ray interactions were used to verify the predicted
performance of the detector. For a source with a differential energy spectrum
proportional to E_{nu}^{-2} and declination larger than +40 degrees, we obtain
E^2(dN_{nu}/dE) <= 10^{-6}GeVcm^{-2}s^{-1} for an energy threshold of 10 GeV.Comment: 46 pages, 22 figures, 4 tables, submitted to Ap.
- …
