1,787 research outputs found

    ecp: An R Package for Nonparametric Multiple Change Point Analysis of Multivariate Data

    Full text link
    There are many different ways in which change point analysis can be performed, from purely parametric methods to those that are distribution free. The ecp package is designed to perform multiple change point analysis while making as few assumptions as possible. While many other change point methods are applicable only for univariate data, this R package is suitable for both univariate and multivariate observations. Estimation can be based upon either a hierarchical divisive or agglomerative algorithm. Divisive estimation sequentially identifies change points via a bisection algorithm. The agglomerative algorithm estimates change point locations by determining an optimal segmentation. Both approaches are able to detect any type of distributional change within the data. This provides an advantage over many existing change point algorithms which are only able to detect changes within the marginal distributions

    Sparse Identification and Estimation of Large-Scale Vector AutoRegressive Moving Averages

    Full text link
    The Vector AutoRegressive Moving Average (VARMA) model is fundamental to the theory of multivariate time series; however, in practice, identifiability issues have led many authors to abandon VARMA modeling in favor of the simpler Vector AutoRegressive (VAR) model. Such a practice is unfortunate since even very simple VARMA models can have quite complicated VAR representations. We narrow this gap with a new optimization-based approach to VARMA identification that is built upon the principle of parsimony. Among all equivalent data-generating models, we seek the parameterization that is "simplest" in a certain sense. A user-specified strongly convex penalty is used to measure model simplicity, and that same penalty is then used to define an estimator that can be efficiently computed. We show that our estimator converges to a parsimonious element in the set of all equivalent data-generating models, in a double asymptotic regime where the number of component time series is allowed to grow with sample size. Further, we derive non-asymptotic upper bounds on the estimation error of our method relative to our specially identified target. Novel theoretical machinery includes non-asymptotic analysis of infinite-order VAR, elastic net estimation under a singular covariance structure of regressors, and new concentration inequalities for quadratic forms of random variables from Gaussian time series. We illustrate the competitive performance of our methods in simulation and several application domains, including macro-economic forecasting, demand forecasting, and volatility forecasting

    Mixed Data and Classification of Transit Stops

    Full text link
    An analysis of the characteristics and behavior of individual bus stops can reveal clusters of similar stops, which can be of use in making routing and scheduling decisions, as well as determining what facilities to provide at each stop. This paper provides an exploratory analysis, including several possible clustering results, of a dataset provided by the Regional Transit Service of Rochester, NY. The dataset describes ridership on public buses, recording the time, location, and number of entering and exiting passengers each time a bus stops. A description of the overall behavior of bus ridership is followed by a stop-level analysis. We compare multiple measures of stop similarity, based on location, route information, and ridership volume over time
    corecore