1,731 research outputs found
Green's functions on finite lattices and their connection to the infinite lattice limit
It is shown that the Green's function on a finite lattice in arbitrary space
dimension can be obtained from that of an infinite lattice by means of
translation operator. Explicit examples are given for one- and two-dimensional
lattices
Quantum Hall Ferrimagnetism in lateral quantum dot molecules
We demonstrate the existance of ferrimagnetic and ferromagnetic phases in a
spin phase diagram of coupled lateral quantum dot molecules in the quantum Hall
regime. The spin phase diagram is determined from Hartree-Fock Configuration
Interaction method as a function of electron numbers N, magnetic field B,
Zeeman energy, and tunneling barrier height. The quantum Hall ferrimagnetic
phase corresponds to spatially imbalanced spin droplets resulting from strong
inter-dot coupling of identical dots. The quantum Hall ferromagnetic phases
correspond to ferromagnetic coupling of spin polarization at filling factors
between and .Comment: 4 pages, 4 figure
Floating Phase in 1D Transverse ANNNI Model
To study the ground state of ANNNI chain under transverse field as a function
of frustration parameter and field strength , we present here
two different perturbative analyses. In one, we consider the (known) ground
state at and as the unperturbed state and treat an
increase of the field from 0 to coupled with an increase of
from 0.5 to as perturbation. The first order perturbation
correction to eigenvalue can be calculated exactly and we could conclude that
there are only two phase transition lines emanating from the point
, . In the second perturbation scheme, we consider the
number of domains of length 1 as the perturbation and obtain the zero-th order
eigenfunction for the perturbed ground state. From the longitudinal spin-spin
correlation, we conclude that floating phase exists for small values of
transverse field over the entire region intermediate between the ferromagnetic
phase and antiphase.Comment: 11 pages, 11 figure
From Effective Lagrangians, to Chiral Bags, to Skyrmions with the Large-N_c Renormalization Group
We explicitly relate effective meson-baryon Lagrangian models, chiral bags,
and Skyrmions in the following way. First, effective Lagrangians are
constructed in a manner consistent with an underlying large-N_c QCD. An
infinite set of graphs dress the bare Yukawa couplings at *leading* order in
1/N_c, and are summed using semiclassical techniques. What emerges is a picture
of the large-N_c baryon reminiscent of the chiral bag: hedgehog pions for r >
1/\Lambda patched onto bare nucleon degrees of freedom for r < 1/\Lambda, where
the ``bag radius'' 1/\Lambda is the UV cutoff on the graphs. Next, a novel
renormalization group (RG) is derived, in which the bare Yukawa couplings,
baryon masses and hyperfine baryon mass splittings run with \Lambda. Finally,
this RG flow is shown to act as a *filter* on the renormalized Lagrangian
parameters: when they are fine-tuned to obey Skyrme-model relations the
continuum limit \Lambda --> \infty exists and is, in fact, a Skyrme model;
otherwise there is no continuum limit.Comment: Figures included (separate file). This ``replaced'' version corrects
the discussion of backwards-in-time baryon
Predicting the locations of possible long-lived low-mass first stars: Importance of satellite dwarf galaxies
The search for metal-free stars has so far been unsuccessful, proving that if
there are surviving stars from the first generation, they are rare, they have
been polluted, or we have been looking in the wrong place. To predict the
likely location of Population~III (Pop~III) survivors, we semi-analytically
model early star formation in progenitors of Milky Way-like galaxies and their
environments. We base our model on merger trees from the high-resolution dark
matter only simulation suite \textit{Caterpillar}. Radiative and chemical
feedback are taken into account self-consistently, based on the spatial
distribution of the haloes. Our results are consistent with the non-detection
of Pop III survivors in the Milky Way today. We find that possible surviving
Population III stars are more common in Milky Way satellites than in the main
Galaxy. In particular, low mass Milky Way satellites contain a much larger
fraction of Pop~III stars than the Milky Way. Such nearby, low mass Milky Way
satellites are promising targets for future attempts to find Pop~III survivors,
especially for high-resolution, high signal-to-noise spectroscopic
observations. We provide the probabilities for finding a Pop~III survivor in
the red giant branch phase for all known Milky Way satellites to guide future
observations.Comment: 17 pages, 12 figures, 1 table, submitted to MNRA
Pion-Nucleon Scattering in a Large-N Sigma Model
We review the large-N_c approach to meson-baryon scattering, including recent
interesting developments. We then study pion-nucleon scattering in a particular
variant of the linear sigma-model, in which the couplings of the sigma and pi
mesons to the nucleon are echoed by couplings to the entire tower of I=J
baryons (including the Delta) as dictated by large-N_c group theory. We sum the
complete set of multi-loop meson-exchange
\pi N --> \pi N and \pi N --> \sigma N Feynman diagrams, to leading order in
1/N_c. The key idea, reviewed in detail, is that large-N_c allows the
approximation of LOOP graphs by TREE graphs, so long as the loops contain at
least one baryon leg; trees, in turn, can be summed by solving classical
equations of motion. We exhibit the resulting partial-wave S-matrix and the
rich nucleon and Delta resonance spectrum of this simple model, comparing not
only to experiment but also to pion-nucleon scattering in the Skyrme model. The
moral is that much of the detailed structure of the meson-baryon S-matrix which
hitherto has been uncovered only with skyrmion methods, can also be described
by models with explicit baryon fields, thanks to the 1/N_c expansion.Comment: This LaTeX file inputs the ReVTeX macropackage; figures accompany i
Canonical representation for electrons and its application to the Hubbard model
A new representation for electrons is introduced, in which the electron
operators are written in terms of a spinless fermion and the Pauli operators.
This representation is canonical, invertible and constraint-free. Importantly,
it simplifies the Hubbard interaction. On a bipartite lattice, the Hubbard
model is reduced to a form in which the exchange interaction emerges simply by
decoupling the Pauli subsystem from the spinless fermion bath. This exchange
correctly reproduces the large superexchange. Also derived, for
, is the Hamiltonian to study Nagaoka ferromagnetism. In this
representation, the infinite- Hubbard problem becomes elegant and easier to
handle. Interestingly, the ferromagnetism in Hubbard model is found to be
related to the gauge invariance of the spinless fermions. Generalization of
this representation for the multicomponent fermions, a new representation for
bosons, the notion of a `soft-core' fermion, and some interesting unitary
transformations are introduced and discussed in the appendices.Comment: 10+ pages, 3 Figure
Soliton quantization and internal symmetry
We apply the method of collective coordinate quantization to a model of
solitons in two spacetime dimensions with a global symmetry. In
particular we consider the dynamics of the charged states associated with
rotational excitations of the soliton in the internal space and their
interactions with the quanta of the background field (mesons). By solving a
system of coupled saddle-point equations we effectively sum all tree-graphs
contributing to the one-point Green's function of the meson field in the
background of a rotating soliton. We find that the resulting one-point function
evaluated between soliton states of definite charge exhibits a pole on
the meson mass shell and we extract the corresponding S-matrix element for the
decay of an excited state via the emission of a single meson using the standard
LSZ reduction formula. This S-matrix element has a natural interpretation in
terms of an effective Lagrangian for the charged soliton states with an
explicit Yukawa coupling to the meson field. We calculate the leading-order
semi-classical decay width of the excited soliton states discuss the
consequences of these results for the hadronic decay of the resonance
in the Skyrme model.Comment: 23 pages, LA-UR-93-299
Spin Glass and ferromagnetism in disordered Cerium compounds
The competition between spin glass, ferromagnetism and Kondo effect is
analysed here in a Kondo lattice model with an inter-site random coupling
between the localized magnetic moments given by a generalization of
the Mattis model which represents an interpolation between ferromagnetism and a
highly disordered spin glass. Functional integral techniques with Grassmann
fields have been used to obtain the partition function. The static
approximation and the replica symmetric ansatz have also been used. The
solution of the problem is presented as a phase diagram giving {\it
versus} where is the temperature, and are the
strengths of the intrasite Kondo and the intersite random couplings,
respectively. If is small, when temperature is decreased, there is a
second order transition from a paramagnetic to a spin glass phase. For lower
, a first order transition appears between the spin glass phase and a
region where there are Mattis states which are thermodynamically equivalent to
the ferromagnetism. For very low , the Mattis states become stable. On
the other hand, it is found as solution a Kondo state for large
values. These results can improve the theoretical description of the well known
experimental phase diagram of .Comment: 17 pages, 5 figures, accepted Phys. Rev.
- …
