860 research outputs found

    Ultrafast laser pulse heating of metallic photocathodes and its contribution to intrinsic emittance

    Full text link
    The heating of the electronic distribution of a copper photocathode due to an intense drive laser pulse is calculated under the two-temperature model using fluences and pulse lengths typical in RF photoinjector operation. Using the finite temperature-extended relations for the photocathode intrinsic emittance and quantum efficiency, the time-dependent emittance growth due to the same photoemission laser pulse is calculated. This laser heating is seen to limit the intrinsic emittance achievable for photoinjectors using short laser pulses and low quantum efficiency metal photocathodes. A pump-probe photocathode experiment in a standard 1.6 cell S-band gun is proposed, in which simulations show the time dependent thermal emittance modulation within the bunch from laser heating can persist for meters downstream and, in principle, be measured using a slice emittance diagnostic

    Gamow-Jordan Vectors and Non-Reducible Density Operators from Higher Order S-Matrix Poles

    Get PDF
    In analogy to Gamow vectors that are obtained from first order resonance poles of the S-matrix, one can also define higher order Gamow vectors which are derived from higher order poles of the S-matrix. An S-matrix pole of r-th order at z_R=E_R-i\Gamma/2 leads to r generalized eigenvectors of order k= 0, 1, ... , r-1, which are also Jordan vectors of degree (k+1) with generalized eigenvalue (E_R-i\Gamma/2). The Gamow-Jordan vectors are elements of a generalized complex eigenvector expansion, whose form suggests the definition of a state operator (density matrix) for the microphysical decaying state of this higher order pole. This microphysical state is a mixture of non-reducible components. In spite of the fact that the k-th order Gamow-Jordan vectors has the polynomial time-dependence which one always associates with higher order poles, the microphysical state obeys a purely exponential decay law.Comment: 39 pages, 3 PostScript figures; sub2.eps may stall some printers and should then be printed out separately; ghostview is o.

    Development of a 3-D energy-momentum analyzer for meV-scale energy electrons.

    Get PDF
    In this article, we report on the development of a time-of-flight based electron energy analyzer capable of measuring the 3-D momentum and energy distributions of very low energy (millielectronvolt-scale) photoemitted electrons. This analyzer is capable for measuring energy and 3-D momentum distributions of electrons with energies down to 1 meV with a sub-millielectronvolt energy resolution. This analyzer is an ideal tool for studying photoemission processes very close to the photoemission threshold and also for studying the physics of photoemission based electron sources
    corecore