49 research outputs found
Insights into the Anaerobic Biodegradation Pathway of n-Alkanes in Oil Reservoirs by Detection of Signature Metabolites
published_or_final_versio
Making clinical trials a public norm for health decisions in sub-Saharan Africa
A clinical trial is intrinsically a collaborative undertaking. The complex steps, including identifying the biological mechanisms, discovering products, preclinical studies, and the clinical development from phase 1 to 3 clinical trials allowing market authorisation of a product, are unlikely to be feasible for a single institution or a country alone. Collaboration is therefore necessary to establish and maintain the research and innovation that is a prerequisite to tackle health threats, irrespective of the socioeconomic status of the countries (1)
The Madagascar palm genome provides new insights on the evolution of Apocynaceae specialized metabolism
Katalytische Abgasreinigung unter den Bedingungen der industriellen Niederdruckaufkohlung mit Acetylen. Catalytic treatment of flue gas from low pressure carburization with acetylene
Microbial communities responsible for fixation of CO<sub>2</sub> revealed by using <i>mcrA</i>, <i>cbbM</i>, <i>cbbL</i>, <i>fthfs</i>, <i>fefe-hydrogenase</i> genes as molecular biomarkers in petroleum reservoirs of different temperatures
Abstract. Sequestration of CO2 in oil reservoir is one of the feasible options for mitigating atmospheric CO2 building up. The in situ bioconversion of sequestrated CO2 to methane by microorganisms inhabiting oil reservoirs is feasible. To evaluate the potential of in situ microbial fixation and conversion of CO2 into CH4 in oil reservoirs, a comprehensive molecular survey was performed to reveal microbial communities inhabiting four oil reservoirs with different temperatures by analysis of functional genes involved in the biochemical pathways of CO2 fixation and CH4 synthesis (cbbM, cbbL, fthfs, [FeFe]-hydrogenase encoding gene, and mcrA). A rich diversity of these functional genes was found in all the samples with both high and low temperatures and they were affiliated to members of the Proteobacteria (cbbL and cbbM, fthfs), Firmicutes and Actinobacteria (fthfs), uncultured bacteria ([FeFe]-hydrogenase), and Methanomirobiales, Methanobacteriales and Methanosarcinales (mcrA). The predominant methanogens were all identified to be hydrogenotrophic CO2-reducing physiological types. These results showed that functional microbial communities capable of microbial fixation and bioconversion of CO2 into methane inhabit widely in oil reservoirs, which is helpful to microbial recycling of sequestrated CO2 to further new energy in oil reservoirs.
</jats:p
Metabolic capability and in situ activity of microorganisms in an oil reservoir
Abstract Background Microorganisms have long been associated with oxic and anoxic degradation of hydrocarbons in oil reservoirs and oil production facilities. While we can readily determine the abundance of microorganisms in the reservoir and study their activity in the laboratory, it has been challenging to resolve what microbes are actively participating in crude oil degradation in situ and to gain insight into what metabolic pathways they deploy. Results Here, we describe the metabolic potential and in situ activity of microbial communities obtained from the Jiangsu Oil Reservoir (China) by an integrated metagenomics and metatranscriptomics approach. Almost complete genome sequences obtained by differential binning highlight the distinct capability of different community members to degrade hydrocarbons under oxic or anoxic condition. Transcriptomic data delineate active members of the community and give insights that Acinetobacter species completely oxidize alkanes into carbon dioxide with the involvement of oxygen, and Archaeoglobus species mainly ferment alkanes to generate acetate which could be consumed by Methanosaeta species. Furthermore, nutritional requirements based on amino acid and vitamin auxotrophies suggest a complex network of interactions and dependencies among active community members that go beyond classical syntrophic exchanges; this network defines community composition and microbial ecology in oil reservoirs undergoing secondary recovery. Conclusion Our data expand current knowledge of the metabolic potential and role in hydrocarbon metabolism of individual members of thermophilic microbial communities from an oil reservoir. The study also reveals potential metabolic exchanges based on vitamin and amino acid auxotrophies indicating the presence of complex network of interactions between microbial taxa within the community
Recommended from our members
Metabolic capability and in situ activity of microorganisms in an oil reservoir.
BackgroundMicroorganisms have long been associated with oxic and anoxic degradation of hydrocarbons in oil reservoirs and oil production facilities. While we can readily determine the abundance of microorganisms in the reservoir and study their activity in the laboratory, it has been challenging to resolve what microbes are actively participating in crude oil degradation in situ and to gain insight into what metabolic pathways they deploy.ResultsHere, we describe the metabolic potential and in situ activity of microbial communities obtained from the Jiangsu Oil Reservoir (China) by an integrated metagenomics and metatranscriptomics approach. Almost complete genome sequences obtained by differential binning highlight the distinct capability of different community members to degrade hydrocarbons under oxic or anoxic condition. Transcriptomic data delineate active members of the community and give insights that Acinetobacter species completely oxidize alkanes into carbon dioxide with the involvement of oxygen, and Archaeoglobus species mainly ferment alkanes to generate acetate which could be consumed by Methanosaeta species. Furthermore, nutritional requirements based on amino acid and vitamin auxotrophies suggest a complex network of interactions and dependencies among active community members that go beyond classical syntrophic exchanges; this network defines community composition and microbial ecology in oil reservoirs undergoing secondary recovery.ConclusionOur data expand current knowledge of the metabolic potential and role in hydrocarbon metabolism of individual members of thermophilic microbial communities from an oil reservoir. The study also reveals potential metabolic exchanges based on vitamin and amino acid auxotrophies indicating the presence of complex network of interactions between microbial taxa within the community
An ancestral signalling pathway is conserved in intracellular symbioses-forming plant lineages
An ancestral signalling pathway is conserved in intracellular symbioses-forming plant lineages
Plants are the foundation of terrestrial ecosystems, and their colonization of land was probably facilitated by mutualistic associations with arbuscular mycorrhizal fungi. Following this founding event, plant diversification has led to the emergence of a tremendous diversity of mutualistic symbioses with microorganisms, ranging from extracellular associations to the most intimate intracellular associations, where fungal or bacterial symbionts are hosted inside plant cells. Here, through analysis of 271 transcriptomes and 116 plant genomes spanning the entire land-plant diversity, we demonstrate that a common symbiosis signalling pathway co-evolved with intracellular endosymbioses, from the ancestral arbuscular mycorrhiza to the more recent ericoid and orchid mycorrhizae in angiosperms and ericoid-like associations of bryophytes. By contrast, species forming exclusively extracellular symbioses, such as ectomycorrhizae, and those forming associations with cyanobacteria, have lost this signalling pathway. This work unifies intracellular symbioses, revealing conservation in their evolution across 450 million yr of plant diversification.An extensive phylogenomics study based on hundreds of genomes and transcriptomes provides a new interpretation of the evolution of different types of symbiotic associations in land plants, and reveals a conserved ancestral symbiosis pathway
