2,108 research outputs found
The Quantum Socket: Three-Dimensional Wiring for Extensible Quantum Computing
Quantum computing architectures are on the verge of scalability, a key
requirement for the implementation of a universal quantum computer. The next
stage in this quest is the realization of quantum error correction codes, which
will mitigate the impact of faulty quantum information on a quantum computer.
Architectures with ten or more quantum bits (qubits) have been realized using
trapped ions and superconducting circuits. While these implementations are
potentially scalable, true scalability will require systems engineering to
combine quantum and classical hardware. One technology demanding imminent
efforts is the realization of a suitable wiring method for the control and
measurement of a large number of qubits. In this work, we introduce an
interconnect solution for solid-state qubits: The quantum socket. The quantum
socket fully exploits the third dimension to connect classical electronics to
qubits with higher density and better performance than two-dimensional methods
based on wire bonding. The quantum socket is based on spring-mounted micro
wires the three-dimensional wires that push directly on a micro-fabricated
chip, making electrical contact. A small wire cross section (~1 mmm), nearly
non-magnetic components, and functionality at low temperatures make the quantum
socket ideal to operate solid-state qubits. The wires have a coaxial geometry
and operate over a frequency range from DC to 8 GHz, with a contact resistance
of ~150 mohm, an impedance mismatch of ~10 ohm, and minimal crosstalk. As a
proof of principle, we fabricated and used a quantum socket to measure
superconducting resonators at a temperature of ~10 mK.Comment: Main: 31 pages, 19 figs., 8 tables, 8 apps.; suppl.: 4 pages, 5 figs.
(HiRes figs. and movies on request). Submitte
The art of being human : a project for general philosophy of science
Throughout the medieval and modern periods, in various sacred and secular guises, the unification of all forms of knowledge under the rubric of ‘science’ has been taken as the prerogative of humanity as a species. However, as our sense of species privilege has been called increasingly into question, so too has the very salience of ‘humanity’ and ‘science’ as general categories, let alone ones that might bear some essential relationship to each other. After showing how the ascendant Stanford School in the philosophy of science has contributed to this joint demystification of ‘humanity’ and ‘science’, I proceed on a more positive note to a conceptual framework for making sense of science as the art of being human. My understanding of ‘science’ is indebted to the red thread that runs from Christian theology through the Scientific Revolution and Enlightenment to the Humboldtian revival of the university as the site for the synthesis of knowledge as the culmination of self-development. Especially salient to this idea is science‘s epistemic capacity to manage modality (i.e. to determine the conditions under which possibilities can be actualised) and its political capacity to organize humanity into projects of universal concern. However, the challenge facing such an ideal in the twentyfirst century is that the predicate ‘human’ may be projected in three quite distinct ways, governed by what I call ‘ecological’, ‘biomedical’ and ‘cybernetic’ interests. Which one of these future humanities would claim today’s humans as proper ancestors and could these futures co-habit the same world thus become two important questions that general philosophy of science will need to address in the coming years
Electron impact excitation cross sections for allowed transitions in atoms
We present a semiempirical Gaunt factor for widely used Van Regemorter
formula [Astrophys. J. 136, 906 (1962)] for the case of allowed transitions in
atoms with the LS coupling scheme. Cross sections calculated using this Gaunt
factor agree with measured cross sections to within the experimental error.Comment: RevTeX, 3 pages, 10 PS figures, 2 PS tables, submitted to Phys. Rev.
Knowledge-based energy functions for computational studies of proteins
This chapter discusses theoretical framework and methods for developing
knowledge-based potential functions essential for protein structure prediction,
protein-protein interaction, and protein sequence design. We discuss in some
details about the Miyazawa-Jernigan contact statistical potential,
distance-dependent statistical potentials, as well as geometric statistical
potentials. We also describe a geometric model for developing both linear and
non-linear potential functions by optimization. Applications of knowledge-based
potential functions in protein-decoy discrimination, in protein-protein
interactions, and in protein design are then described. Several issues of
knowledge-based potential functions are finally discussed.Comment: 57 pages, 6 figures. To be published in a book by Springe
Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF
The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at
the Fermilab Long-Baseline Neutrino Facility (LBNF) is described
Core Circadian Clock Genes Regulate Leukemia Stem Cells in AML
Leukemia stem cells (LSCs) have the capacity to self-renew and propagate disease upon serial transplantation in animal models, and elimination of this cell population is required for curative therapies. Here, we describe a series of pooled, in vivo RNAi screens to identify essential transcription factors (TFs) in a murine model of acute myeloid leukemia (AML) with genetically and phenotypically defined LSCs. These screens reveal the heterodimeric, circadian rhythm TFs Clock and Bmal1 as genes required for the growth of AML cells in vitro and in vivo. Disruption of canonical circadian pathway components produces anti-leukemic effects, including impaired proliferation, enhanced myeloid differentiation, and depletion of LSCs. We find that both normal and malignant hematopoietic cells harbor an intact clock with robust circadian oscillations, and genetic knockout models reveal a leukemia-specific dependence on the pathway. Our findings establish a role for the core circadian clock genes in AML.National Institutes of Health (U.S.) (Grant P01 CA066996)National Institutes of Health (U.S.) (Grant R01 HL082945)National Cancer Institute (U.S.) (Grant P30-CA14051
A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam
A Short-Baseline Neutrino (SBN) physics program of three LAr-TPC detectors
located along the Booster Neutrino Beam (BNB) at Fermilab is presented. This
new SBN Program will deliver a rich and compelling physics opportunity,
including the ability to resolve a class of experimental anomalies in neutrino
physics and to perform the most sensitive search to date for sterile neutrinos
at the eV mass-scale through both appearance and disappearance oscillation
channels. Using data sets of 6.6e20 protons on target (P.O.T.) in the LAr1-ND
and ICARUS T600 detectors plus 13.2e20 P.O.T. in the MicroBooNE detector, we
estimate that a search for muon neutrino to electron neutrino appearance can be
performed with ~5 sigma sensitivity for the LSND allowed (99% C.L.) parameter
region. In this proposal for the SBN Program, we describe the physics analysis,
the conceptual design of the LAr1-ND detector, the design and refurbishment of
the T600 detector, the necessary infrastructure required to execute the
program, and a possible reconfiguration of the BNB target and horn system to
improve its performance for oscillation searches.Comment: 209 pages, 129 figure
Canola yield formation under different population and water use levels
Non-Peer ReviewedOptimum population is the foundation for high yields under rain-fed agriculture and the optimum population depends on the water availability. However, establishing a good canola stand in the Canadian semiarid Prairie, where low temperature, water stress and soil crusting result in poor seed bed conditions, is difficult. A field study was conducted during 2000, a year with moderate soil moisture and good canola growing conditions, and 2001, a year with severe water and heat stress, to understand the plasticity of canola yield parameters at different (80 to 5 plants per square meter) plant populations. The primary response of canola to lower plant population was increased branching, although it did not compensate completely for the decreasing population. Increased branching was accompanied by increased production and increased distribution of pods on the primary and secondary branches. Canola exhibited plasticity in yield adjustment over a wide range of plant populations. Environmental conditions played a significant role in expressing canola plasticity. For example, in a normal year like 2000 canola maintained similar yield levels over a wider range of populations (80 to 20 pl m-2), while in a dry year like 2001 seed yield started declining with populations below 40 pl m-2. Ability to produce more pods, especially at lower population densities, was responsible for the environmental influence on yield formation
Stubble height and fertilizer N requirements for maximizing canola yield in the semiarid Canadian prairie
Non-Peer ReviewedCanola is becoming a viable crop when grown under fallow in the semiarid prairie, but is also grown in longer rotations, most often direct seeded into standing stubble. Taller standing stubble provides the canola seedlings with a more favorable micro-climate promoting more efficient use of water and increased yields compared to canola grown without the protection of standing stubble. When grown under the more limited moisture conditions of extended rotations but in the moisture conserving characteristics of taller standing stubble, we found canola yielded best with fertilizer N rates similar to those of the moister Black soil zone. Canola yields were consistently highest when fertilized with > 100 kg N ha-1
- …
