629 research outputs found

    The detection of syngamin, an indigenous plant hormone, by culture of immature corn embryos

    Get PDF
    Digitized 2007 AES.Includes bibliographical references (pages 85-91)

    Follow-Up Observations of PTFO 8-8695: A 3 MYr Old T-Tauri Star Hosting a Jupiter-mass Planetary Candidate

    Get PDF
    We present Spitzer 4.5\micron\ light curve observations, Keck NIRSPEC radial velocity observations, and LCOGT optical light curve observations of PTFO~8-8695, which may host a Jupiter-sized planet in a very short orbital period (0.45 days). Previous work by \citet{vaneyken12} and \citet{barnes13} predicts that the stellar rotation axis and the planetary orbital plane should precess with a period of 300600300 - 600 days. As a consequence, the observed transits should change shape and depth, disappear, and reappear with the precession. Our observations indicate the long-term presence of the transit events (>3>3 years), and that the transits indeed do change depth, disappear and reappear. The Spitzer observations and the NIRSPEC radial velocity observations (with contemporaneous LCOGT optical light curve data) are consistent with the predicted transit times and depths for the $M_\star = 0.34\ M_\odot$ precession model and demonstrate the disappearance of the transits. An LCOGT optical light curve shows that the transits do reappear approximately 1 year later. The observed transits occur at the times predicted by a straight-forward propagation of the transit ephemeris. The precession model correctly predicts the depth and time of the Spitzer transit and the lack of a transit at the time of the NIRSPEC radial velocity observations. However, the precession model predicts the return of the transits approximately 1 month later than observed by LCOGT. Overall, the data are suggestive that the planetary interpretation of the observed transit events may indeed be correct, but the precession model and data are currently insufficient to confirm firmly the planetary status of PTFO~8-8695b.Comment: Accepted for publication in The Astrophysical Journa

    A Planarity Test via Construction Sequences

    Full text link
    Optimal linear-time algorithms for testing the planarity of a graph are well-known for over 35 years. However, these algorithms are quite involved and recent publications still try to give simpler linear-time tests. We give a simple reduction from planarity testing to the problem of computing a certain construction of a 3-connected graph. The approach is different from previous planarity tests; as key concept, we maintain a planar embedding that is 3-connected at each point in time. The algorithm runs in linear time and computes a planar embedding if the input graph is planar and a Kuratowski-subdivision otherwise

    Benefit-Cost Analysis of FEMA Hazard Mitigation Grants

    Get PDF
    Mitigation ameliorates the impact of natural hazards on communities by reducing loss of life and injury, property and environmental damage, and social and economic disruption. The potential to reduce these losses brings many benefits, but every mitigation activity has a cost that must be considered in our world of limited resources. In principle benefit-cost analysis (BCA) can be used to assess a mitigation activity’s expected net benefits (discounted future benefits less discounted costs), but in practice this often proves difficult. This paper reports on a study that refined BCA methodologies and applied them to a national statistical sample of FEMA mitigation activities over a ten-year period for earthquake, flood, and wind hazards. The results indicate that the overall benefit-cost ratio for FEMA mitigation grants is about 4 to 1, though the ratio varies according to hazard and mitigation type.

    Willmar Junior High: Examining Education & Environment

    Get PDF
    A new junior high school for Willmar, Minnesota that will examine the meaning of ?environment? and its effect on both interior and exterior spaces in relationship to education

    Optical-Model Description of Time-Reversal Violation

    Full text link
    A time-reversal-violating spin-correlation coefficient in the total cross section for polarized neutrons incident on a tensor rank-2 polarized target is calculated by assuming a time-reversal-noninvariant, parity-conserving ``five-fold" interaction in the neutron-nucleus optical potential. Results are presented for the system n+165Hon + {^{165}{\rm Ho}} for neutron incident energies covering the range 1--20 MeV. From existing experimental bounds, a strength of 2±102 \pm 10 keV is deduced for the real and imaginary parts of the five-fold term, which implies an upper bound of order 10410^{-4} on the relative TT-odd strength when compared to the central real optical potential.Comment: 11 pages (Revtex

    Epidemics on contact networks: a general stochastic approach

    Full text link
    Dynamics on networks is considered from the perspective of Markov stochastic processes. We partially describe the state of the system through network motifs and infer any missing data using the available information. This versatile approach is especially well adapted for modelling spreading processes and/or population dynamics. In particular, the generality of our systematic framework and the fact that its assumptions are explicitly stated suggests that it could be used as a common ground for comparing existing epidemics models too complex for direct comparison, such as agent-based computer simulations. We provide many examples for the special cases of susceptible-infectious-susceptible (SIS) and susceptible-infectious-removed (SIR) dynamics (e.g., epidemics propagation) and we observe multiple situations where accurate results may be obtained at low computational cost. Our perspective reveals a subtle balance between the complex requirements of a realistic model and its basic assumptions.Comment: Main document: 16 pages, 7 figures. Electronic Supplementary Material (included): 6 pages, 1 tabl

    The angular distribution of the reaction νˉe+pe++n\bar{\nu}_e + p \to e^+ + n

    Get PDF
    The reaction νˉe+pe++n\bar{\nu}_e + p \to e^+ + n is very important for low-energy (Eν60E_\nu \lesssim 60 MeV) antineutrino experiments. In this paper we calculate the positron angular distribution, which at low energies is slightly backward. We show that weak magnetism and recoil corrections have a large effect on the angular distribution, making it isotropic at about 15 MeV and slightly forward at higher energies. We also show that the behavior of the cross section and the angular distribution can be well-understood analytically for Eν60E_\nu \lesssim 60 MeV by calculating to O(1/M){\cal O}(1/M), where MM is the nucleon mass. The correct angular distribution is useful for separating νˉe+pe++n\bar{\nu}_e + p \to e^+ + n events from other reactions and detector backgrounds, as well as for possible localization of the source (e.g., a supernova) direction. We comment on how similar corrections appear for the lepton angular distributions in the deuteron breakup reactions νˉe+de++n+n\bar{\nu}_e + d \to e^+ + n + n and νe+de+p+p\nu_e + d \to e^- + p + p. Finally, in the reaction νˉe+pe++n\bar{\nu}_e + p \to e^+ + n, the angular distribution of the outgoing neutrons is strongly forward-peaked, leading to a measurable separation in positron and neutron detection points, also potentially useful for rejecting backgrounds or locating the source direction.Comment: 10 pages, including 5 figure

    What have transgenic and knockout animals taught us about respiratory disease?

    Get PDF
    Over the past decade there has been a significant shift to the use of murine models for investigations into the molecular basis of respiratory diseases, including asthma and chronic obstructive pulmonary disease. These models offer the exciting prospect of dissecting the complex interaction between cytokines, chemokines and growth related peptides in disease pathogenesis. Furthermore, the receptors and the intracellular signalling pathways that are subsequently activated are amenable for study because of the availability of monoclonal antibodies and techniques for targeted gene disruption and gene incorporation for individual mediators, receptors and proteins. However, it is clear that extrapolation from these models to the human condition is not straightforward, as reflected by some recent clinical disappointments. This is not necessarily a problem with the use of mice itself, but results from our continued ignorance of the disease process and how to improve the modelling of complex interactions between different inflammatory mediators that underlie clinical pathology. This review highlights some of the strengths and weaknesses of murine models of respiratory disease
    corecore