2,239 research outputs found
Adiabatic two-qubit gates in capacitively coupled quantum dot hybrid qubits
The ability to tune qubits to flat points in their energy dispersions ("sweet
spots") is an important tool for mitigating the effects of charge noise and
dephasing in solid-state devices. However, the number of derivatives that must
be simultaneously set to zero grows exponentially with the number of coupled
qubits, making the task untenable for as few as two qubits. This is a
particular problem for adiabatic gates, due to their slower speeds. Here, we
propose an adiabatic two-qubit gate for quantum dot hybrid qubits, based on the
tunable, electrostatic coupling between distinct charge configurations. We
confirm the absence of a conventional sweet spot, but show that controlled-Z
(CZ) gates can nonetheless be optimized to have fidelities of 99% for a
typical level of quasistatic charge noise (1
eV). We then develop the concept of a dynamical sweet spot (DSS), for
which the time-averaged energy derivatives are set to zero, and identify a
simple pulse sequence that achieves an approximate DSS for a CZ gate, with a
5 improvement in the fidelity. We observe that the results depend on
the number of tunable parameters in the pulse sequence, and speculate that a
more elaborate sequence could potentially attain a true DSS.Comment: 14 pages, 9 figure
Anomalous increase in nematic-isotropic transition temperature in dimer molecules induced by magnetic field
We have determined the nematic-isotropic transition temperature as a function of applied magnetic field in three different thermotropic liquid crystalline dimers. These molecules are comprised of two rigid calamitic moieties joined end to end by flexible spacers with odd numbers of methylene groups. They show an unprecedented magnetic field enhancement of nematic order in that the transition temperature is increased by up to 15K when subjected to 22T magnetic field. The increase is conjectured to be caused by a magnetic field-induced decrease of the average bend angle in the aliphatic spacers connecting the rigid mesogenic units of the dimers
Tight-binding study of structure and vibrations of amorphous silicon
We present a tight-binding calculation that, for the first time, accurately
describes the structural, vibrational and elastic properties of amorphous
silicon. We compute the interatomic force constants and find an unphysical
feature of the Stillinger-Weber empirical potential that correlates with a much
noted error in the radial distribution function associated with that potential.
We also find that the intrinsic first peak of the radial distribution function
is asymmetric, contrary to usual assumptions made in the analysis of
diffraction data. We use our results for the normal mode frequencies and
polarization vectors to obtain the zero-point broadening effect on the radial
distribution function, enabling us to directly compare theory and a high
resolution x-ray diffraction experiment
A fibre forming smectic twist-bent liquid crystalline phase
We demonstrate the nanostructure and filament formation of a novel liquid crystal phase of a dimeric mesogen below the twist–bend nematic phase. The new fibre-forming phase is distinguished by a short-correlated smectic order combined with an additional nanoscale periodicity that is not associated with density modulation
Tight-binding study of high-pressure phase transitions in titanium: alpha to omega and beyond
We use a tight-binding total energy method, with parameters determined from a
fit to first-principles calculations, to examine the newly discovered gamma
phase of titanium. Our parameters were adjusted to accurately describe the
alpha Ti-omega Ti phase transition, which is misplaced by density functional
calculations. We find a transition from omega Ti to gamma Ti at 102 GPa, in
good agreement with the experimental value of 116 GPa. Our results suggest that
current density functional calculations will not reproduce the omega Ti-gamma
Ti phase transition, but will instead predict a transition from omega Ti to the
bcc beta Ti phase.Comment: 3 encapsulated Postscript figures, submitted to Phyical Review
Letter
Long-Distance Wind-Dispersal of Spores in a Fungal Plant Pathogen: Estimation of Anisotropic Dispersal Kernels from an Extensive Field Experiment
Given its biological significance, determining the dispersal kernel (i.e., the distribution of dispersal distances) of spore-producing pathogens is essential. Here, we report two field experiments designed to measure disease gradients caused by sexually- and asexually-produced spores of the wind-dispersed banana plant fungus Mycosphaerella fijiensis. Gradients were measured during a single generation and over 272 traps installed up to 1000 m along eight directions radiating from a traceable source of inoculum composed of fungicide-resistant strains. We adjusted several kernels differing in the shape of their tail and tested for two types of anisotropy. Contrasting dispersal kernels were observed between the two types of spores. For sexual spores (ascospores), we characterized both a steep gradient in the first few metres in all directions and rare long-distance dispersal (LDD) events up to 1000 m from the source in two directions. A heavy-tailed kernel best fitted the disease gradient. Although ascospores distributed evenly in all directions, average dispersal distance was greater in two different directions without obvious correlation with wind patterns. For asexual spores (conidia), few dispersal events occurred outside of the source plot. A gradient up to 12.5 m from the source was observed in one direction only. Accordingly, a thin-tailed kernel best fitted the disease gradient, and anisotropy in both density and distance was correlated with averaged daily wind gust. We discuss the validity of our results as well as their implications in terms of disease diffusion and management strategy
Pressure Dependence of the Elastic Moduli in Aluminum Rich Al-Li Compounds
I have carried out numerical first principles calculations of the pressure
dependence of the elastic moduli for several ordered structures in the
Aluminum-Lithium system, specifically FCC Al, FCC and BCC Li, L1_2 Al_3Li, and
an ordered FCC Al_7Li supercell. The calculations were performed using the full
potential linear augmented plane wave method (LAPW) to calculate the total
energy as a function of strain, after which the data was fit to a polynomial
function of the strain to determine the modulus. A procedure for estimating the
errors in this process is also given. The predicted equilibrium lattice
parameters are slightly smaller than found experimentally, consistent with
other LDA calculations. The computed elastic moduli are within approximately
10% of the experimentally measured moduli, provided the calculations are
carried out at the experimental lattice constant. The LDA equilibrium shear
modulus C11-C12 increases from 59.3 GPa in Al, to 76.0 GPa in Al_7Li, to 106.2
GPa in Al_3Li. The modulus C_44 increases from 38.4 GPa in Al to 46.1 GPa in
Al_7Li, then falls to 40.7 GPa in Al_3Li. All of the calculated elastic moduli
increase with pressure with the exception of BCC Li, which becomes elastically
unstable at about 2 GPa, where C_11-C_12 vanishes.Comment: 17 pages (REVTEX) + 7 postscript figure
Dynamical properties of Au from tight-binding molecular-dynamics simulations
We studied the dynamical properties of Au using our previously developed
tight-binding method. Phonon-dispersion and density-of-states curves at T=0 K
were determined by computing the dynamical-matrix using a supercell approach.
In addition, we performed molecular-dynamics simulations at various
temperatures to obtain the temperature dependence of the lattice constant and
of the atomic mean-square-displacement, as well as the phonon density-of-states
and phonon-dispersion curves at finite temperature. We further tested the
transferability of the model to different atomic environments by simulating
liquid gold. Whenever possible we compared these results to experimental
values.Comment: 7 pages, 9 encapsulated Postscript figures, submitted to Physical
Review
Thermal Stabilization of the HCP Phase in Titanium
We have used a tight-binding model that is fit to first-principles
electronic-structure calculations for titanium to calculate quasi-harmonic
phonons and the Gibbs free energy of the hexagonal close-packed (hcp) and omega
crystal structures. We show that the true zero-temperature ground-state is the
omega structure, although this has never been observed experimentally at normal
pressure, and that it is the entropy from the thermal population of phonon
states which stabilizes the hcp structure at room temperature. We present the
first completely theoretical prediction of the temperature- and
pressure-dependence of the hcp-omega phase transformation and show that it is
in good agreement with experiment. The quasi-harmonic approximation fails to
adequately treat the bcc phase because the zero-temperature phonons of this
structure are not all stable
- …
