172 research outputs found

    Submillimeter continuum observations of Sagittarius B2 at subarcsecond spatial resolution

    Get PDF
    We report the first high spatial resolution submillimeter continuum observations of the Sagittarius B2 cloud complex using the Submillimeter Array (SMA). With the subarcsecond resolution provided by the SMA, the two massive star-forming clumps Sgr B2(N) and Sgr B2(M) are resolved into multiple compact sources. In total, twelve submillimeter cores are identified in the Sgr B2(M) region, while only two components are observed in the Sgr B2(N) clump. The gas mass and column density are estimated from the dust continuum emission. We find that most of the cores have gas masses in excess of 100 M_{\odot} and column densities above 1025^{25} cm2^{-2}. The very fragmented appearance of Sgr B2(M), in contrast to the monolithic structure of Sgr B2 (N), suggests that the former is more evolved. The density profile of the Sgr B2(N)-SMA1 core is well fitted by a Plummer density distribution. This would lead one to believe that in the evolutionary sequence of the Sgr B2 cloud complex, a massive star forms first in an homogeneous core, and the rest of the cluster forms subsequently in the then fragmenting structure.Comment: 4 pages, 2 figures, accepted by A&A letter

    A Submillimeter HCN Laser in IRC+10216

    Get PDF
    We report the detection of a strong submillimeter wavelength HCN laser line at a frequency near 805 GHz toward the carbon star IRC+10216. This line, the J=9-8 rotational transition within the (04(0)0) vibrationally excited state, is one of a series of HCN laser lines that were first detected in the laboratory in the early days of laser spectroscopy. Since its lower energy level is 4200 K above the ground state, the laser emission must arise from the inner part of IRC+10216's circumstellar envelope. To better characterize this environment, we observed other, thermally emitting, vibrationally excited HCN lines and find that they, like the laser line, arise in a region of temperature approximately 1000 K that is located within the dust formation radius; this conclusion is supported by the linewidth of the laser. The (04(0)0), J=9-8 laser might be chemically pumped and may be the only known laser (or maser) that is excited both in the laboratory and in space by a similar mechanism.Comment: 11 pages, 3 figure

    37 GHz methanol masers : Horsemen of the Apocalypse for the class II methanol maser phase?

    Full text link
    We report the results of a search for class II methanol masers at 37.7, 38.3 and 38.5 GHz towards a sample of 70 high-mass star formation regions. We primarily searched towards regions known to show emission either from the 107 GHz class II methanol maser transition, or from the 6.035 GHz excited OH transition. We detected maser emission from 13 sources in the 37.7 GHz transition, eight of these being new detections. We detected maser emission from three sources in the 38 GHz transitions, one of which is a new detection. We find that 37.7 GHz methanol masers are only associated with the most luminous 6.7 and 12.2 GHz methanol maser sources, which in turn are hypothesised to be the oldest class II methanol sources. We suggest that the 37.7 GHz methanol masers are associated with a brief evolutionary phase (of 1000-4000 years) prior to the cessation of class II methanol maser activity in the associated high-mass star formation region.Comment: 14 pages, 4 figures, accepted for publication in Ap

    Far and mid infrared observations of two ultracompact H II regions and one compact CO clump

    Get PDF
    Two ultracompact H II regions (IRAS 19181+1349 and 20178+4046) and one compact molecular clump (20286+4105) have been observed at far infrared wavelengths using the TIFR 1 m balloon-borne telescope and at mid infrared wavelengths using ISO. Far infrared observations have been made simultaneously in two bands with effective wavelengths of ~ 150 and ~ 210 micron, using liquid 3He cooled bolometer arrays. ISO observations have been made in seven spectral bands using the ISOCAM instrument; four of these bands cover the emission from Polycyclic Aromatic Hydrocarbon (PAH) molecules. In addition, IRAS survey data for these sources in the four IRAS bands have been processed using the HIRES routine. In the high resolution mid infrared maps as well as far infrared maps multiple embedded energy sources have been resolved. There are structural similarities between the images in the mid infrared and the large scale maps in the far infrared bands, despite very different angular resolutions of the two. Dust temperature and optical depth (tau_150 um) maps have also been generated using the data from balloon-borne observations. Spectral energy distributions (SEDs) for these sources have been constructed by combining the data from all these observations. Radiation transfer calculations have been made to understand these SEDs. Parameters for the dust envelopes in these sources have been derived by fitting the observed SEDs. In particular, it has been found that radial density distribution for three sources is diffrent. Whereas in the case of IRAS 20178+4046, a steep distribution of the form r^-2 is favoured, for IRAS 20286+4105 it is r^-1 and for IRAS 19181+1349 it the uniform distribution (r^0). Line ratios for PAH bands have generally been found to be similar to those for other compact H II regions but different from general H II regions.Comment: To appear in Astronomy & Astrophysics; (19 pages including 14 Figures and 6 Tables

    Star Formation in the Central 400 pc of the Milky Way: Evidence for a Population of Massive YSOs

    Get PDF
    The central kpc of the Milky Way might be expected to differ significantly from the rest of the Galaxy with regard to gas dynamics and the formation of YSOs. We probe this possibility with mid-infrared observations obtained with IRAC and MIPS on Spitzer and with MSX. We use color-color diagrams and SED fits to explore the nature of YSO candidates (including objects with 4.5 micron excesses possibly due to molecular emission). There is an asymmetry in the distribution of the candidate YSOs, which tend to be found at negative Galactic longitudes; this behavior contrasts with that of the molecular gas, approximately 2/3 of which is at positive longitudes. The small scale height of these objects suggests that they are within the Galactic center region and are dynamically young. They lie between two layers of infrared dark clouds and may have originated from these clouds. We identify new sites for this recent star formation. The methanol masers appear to be associated with young, embedded YSOs characterized by 4.5 micron excesses. We use the SEDs of these sources to estimate their physical characteristics. Within the central 400x50 pc (|l|<1.3\degr and |b|<10') the star formation rate based on the identification of Stage I evolutionary phase of YSO candidates is about 0.14 solar mass/yr. We suggest that a recent burst of star formation took place within the last 10^5 years. This suggestion is also consistent with estimates of star formation rates within the last ~10^7 years showing a peak around 10^5 years ago. Lastly, we find that the Schmidt-Kennicutt Law applies well in the central 400 pc of the Galaxy. This implies that star formation does not appear to be dramatically affected by the extreme physical conditions in the Galactic center region.Comment: 96 pages, ten tables, 35 figures, ApJ (in press), replaced by a revised versio

    Detection of new sources of methanol emission at 107 and 108 GHz with the Mopra telescope

    Get PDF
    A southern hemisphere survey of methanol emission sources in two millimeter wave transitions has been carried out using the ATNF Mopra millimetre telescope. Sixteen emission sources have been detected in the 3(1)-4(0)A+ transition of methanol at 107 GHz, including six new sources exhibiting class II methanol maser emission features. Combining these results with the similar northern hemisphere survey, a total of eleven 107-GHz methanol masers have been detected. A survey of the methanol emission in the 0(0)-1(-1)E transition at 108 GHz resulted in the detection of 16 sources; one of them showing maser characteristics. This is the first methanol maser detected at 108 GHz, presumably of class II. The results of LVG statistical equilibrium calculations confirm the classification of these new sources as a class II methanol masers.Comment: 11 pages, 6 figures, accepted for publication in MNRAS, mn.sty include

    A search for 85.5- and 86.6-GHz methanol maser emission

    Full text link
    We have used the Australia Telescope National Facility Mopra 22m millimetre telescope to search for emission from the 85.5-GHz and 86.6-GHz transitions of methanol. The search was targeted towards 22 star formation regions which exhibit maser emission in the 107.0-GHz methanol transition, as well as in the 6.6-GHz transition characteristic of class II methanol maser sources. A total of 22 regions were searched at 85.5 GHz resulting in 5 detections, of which 1 appears to be a newly discovered maser. For the 86.6-GHz transition observations were made of 18 regions which yielded 2 detections, but no new maser sources. This search demonstrates that emission from the 85.5- and 86.6-GHz transitions is rare. Detection of maser emission from either of these transitions therefore indicates the presence of special conditions, different from those in the majority of methanol maser sources. We have observed temporal variability in the 86.6-GHz emission towards 345.010+1.792, which along with the very narrow line width, confirms that the emission is a maser in this source. We have combined our current observations with published data for the 6.6-, 12.1-, 85.5-, 86.6-, 107.0-, 108.8- and 156.6-GHz transitions for comparison with the maser model of Sobolev & Deguchi (1994). This has allowed us to estimate the likely ranges of dust temperature, gas density, and methanol column density, both for typical methanol maser sources and for those sources which also show 107.0-GHz emission.Comment: 11 pages, accepted for publication in MNRAS, Latex, mn2e.cl

    First Acetic Acid Survey with CARMA in Hot Molecular Cores

    Full text link
    Acetic acid (CH3_3COOH) has been detected mainly in hot molecular cores where the distribution between oxygen (O) and nitrogen (N) containing molecular species is co-spatial within the telescope beam. Previous work has presumed that similar cores with co-spatial O and N species may be an indicator for detecting acetic acid. However, does this presumption hold as higher spatial resolution observations become available of large O and N-containing molecules? As the number of detected acetic acid sources is still low, more observations are needed to support this postulate. In this paper, we report the first acetic acid survey conducted with the Combined Array for Research in Millimeter-wave Astronomy (CARMA) at 3 mm wavelengths towards G19.61-0.23, G29.96-0.02 and IRAS 16293-2422. We have successfully detected CH3_3COOH via two transitions toward G19.61-0.23 and tentatively confirmed the detection toward IRAS 16293-2422 A. The determined column density of CH3_3COOH is 2.0(1.0)×1016\times 10^{16} cm2^{-2} and the abundance ratio of CH3_3COOH to methyl formate (HCOOCH3_3) is 2.2(0.1)×101\times 10^{-1} toward G19.61-0.23. Toward IRAS 16293 A, the determined column density of CH3_3COOH is \sim 1.6 ×1015\times 10^{15} cm2^{-2} and the abundance ratio of CH3_3COOH to methyl formate (HCOOCH3_3) is \sim 1.0 ×101\times 10^{-1} both of which are consistent with abundance ratios determined toward other hot cores. Finally, we model all known line emission in our passband to determine physical conditions in the regions and introduce a new metric to better reveal weak spectral features that are blended with stronger lines or that may be near the 1-2σ\sigma detection limit.Comment: 28 pages, 8 figures, accepted for publication in the ApJ; Revised citation in session 2, references remove

    New 9.9-GHz methanol masers

    Full text link
    The Australia Telescope Compact Array (ATCA) has been used to make the first extensive search for the class I methanol masers at 9.9 GHz. In total, 48 regions of high-mass star formation were observed. In addition to masers in W33-Met (G12.80-0.19) and G343.12-0.06 (IRAS 16547-4247) which have already been reported in the literature, two new 9.9-GHz masers have been found towards G331.13-0.24 and G19.61-0.23. We have determined absolute positions (accurate to roughly a second of arc) for all the detected masers and suggest that some class I masers may be associated with shocks driven into molecular clouds by expanding HII regions. Our observations also imply that the evolutionary stage of a high-mass star forming region when the class I masers are present can outlast the stage when the class II masers at 6.7 GHz are detectable, and overlaps significantly with the stage when OH masers are active.Comment: accepted for publication in MNRAS, 14 pages, 3 figures, 4 table

    Ground-state ammonia and water in absorption towards Sgr B2

    Get PDF
    We have used the Odin submillimetre-wave satellite telescope to observe the ground state transitions of ortho-ammonia and ortho-water, including their 15N, 18O, and 17O isotopologues, towards Sgr B2. The extensive simultaneous velocity coverage of the observations, >500 km/s, ensures that we can probe the conditions of both the warm, dense gas of the molecular cloud Sgr B2 near the Galactic centre, and the more diffuse gas in the Galactic disk clouds along the line-of-sight. We present ground-state NH3 absorption in seven distinct velocity features along the line-of-sight towards Sgr B2. We find a nearly linear correlation between the column densities of NH3 and CS, and a square-root relation to N2H+. The ammonia abundance in these diffuse Galactic disk clouds is estimated to be about (0.5-1)e-8, similar to that observed for diffuse clouds in the outer Galaxy. On the basis of the detection of H218O absorption in the 3 kpc arm, and the absence of such a feature in the H217O spectrum, we conclude that the water abundance is around 1e-7, compared to ~1e-8 for NH3. The Sgr B2 molecular cloud itself is seen in absorption in NH3, 15NH3, H2O, H218O, and H217O, with emission superimposed on the absorption in the main isotopologues. The non-LTE excitation of NH3 in the environment of Sgr B2 can be explained without invoking an unusually hot (500 K) molecular layer. A hot layer is similarly not required to explain the line profiles of the 1_{1,0}-1_{0,1} transition from H2O and its isotopologues. The relatively weak 15NH3 absorption in the Sgr B2 molecular cloud indicates a high [14N/15N] isotopic ratio >600. The abundance ratio of H218O and H217O is found to be relatively low, 2.5--3. These results together indicate that the dominant nucleosynthesis process in the Galactic centre is CNO hydrogen burning.Comment: 10 pages, 5 figure
    corecore