49,836 research outputs found
From scattering theory to complex wave dynamics in non-hermitian PT-symmetric resonators
I review how methods from mesoscopic physics can be applied to describe the
multiple wave scattering and complex wave dynamics in non-hermitian
PT-symmetric resonators, where an absorbing region is coupled symmetrically to
an amplifying region. Scattering theory serves as a convenient tool to classify
the symmetries beyond the single-channel case and leads to effective
descriptions which can be formulated in the energy domain (via Hamiltonians)
and in the time domain (via time evolution operators). These models can then be
used to identify the mesoscopic time and energy scales which govern the
spectral transition from real to complex eigenvalues. The possible presence of
magneto-optical effects (a finite vector potential) in multichannel systems
leads to a variant (termed PTT' symmetry) which imposes the same spectral
constraints as PT symmetry. I also provide multichannel versions of generalized
flux-conservation laws.Comment: 10 pages, 5 figures, minireview for a theme issue, Philosophical
Transactions of the Royal Society
H-MAC: A Hybrid MAC Protocol for Wireless Sensor Networks
In this paper, we propose a hybrid medium access control protocol (H-MAC) for
wireless sensor networks. It is based on the IEEE 802.11's power saving
mechanism (PSM) and slotted aloha, and utilizes multiple slots dynamically to
improve performance. Existing MAC protocols for sensor networks reduce energy
consumptions by introducing variation in an active/sleep mechanism. But they
may not provide energy efficiency in varying traffic conditions as well as they
did not address Quality of Service (QoS) issues. H-MAC, the propose MAC
protocol maintains energy efficiency as well as QoS issues like latency,
throughput, and channel utilization. Our numerical results show that H-MAC has
significant improvements in QoS parameters than the existing MAC protocols for
sensor networks while consuming comparable amount of energy.Comment: 10 pages, IJCNC Journal 201
Glassy dynamics in granular compaction
Two models are presented to study the influence of slow dynamics on granular
compaction. It is found in both cases that high values of packing fraction are
achieved only by the slow relaxation of cooperative structures. Ongoing work to
study the full implications of these results is discussed.Comment: 12 pages, 9 figures; accepted in J. Phys: Condensed Matter,
proceedings of the Trieste workshop on 'Unifying concepts in glass physics
Dynamics of Shear-Transformation Zones in Amorphous Plasticity: Formulation in Terms of an Effective Disorder Temperature
This investigation extends earlier studies of a shear-transformation-zone
(STZ) theory of plastic deformation in amorphous solids. My main purpose here
is to explore the possibility that the configurational degrees of freedom of
such systems fall out of thermodynamic equilibrium with the heat bath during
persistent mechanical deformation, and that the resulting state of
configurational disorder may be characterized by an effective temperature. The
further assumption that the population of STZ's equilibrates with the effective
temperature allows the theory to be compared directly with experimentally
measured properties of metallic glasses, including their calorimetric behavior.
The coupling between the effective temperature and mechanical deformation
suggests an explanation of shear-banding instabilities.Comment: 29 pages, 11 figure
Exponential sensitivity of noise-driven switching in genetic networks
Cells are known to utilize biochemical noise to probabilistically switch between distinct gene expression states. We demonstrate that such noise-driven switching is dominated by tails of probability distributions and is therefore exponentially sensitive to changes in physiological parameters such as transcription and translation rates. However, provided mRNA lifetimes are short, switching can still be accurately simulated using protein-only models of gene expression. Exponential sensitivity limits the robustness of noise-driven switching, suggesting cells may use other mechanisms in order to switch reliably
Density-functional theory for fermions in the unitary regime
In the unitary regime, fermions interact strongly via two-body potentials
that exhibit a zero range and a (negative) infinite scattering length. The
energy density is proportional to the free Fermi gas with a proportionality
constant . We use a simple density functional parametrized by an effective
mass and the universal constant , and employ Kohn-Sham density-functional
theory to obtain the parameters from fit to one exactly solvable two-body
problem. This yields and a rather large effective mass. Our approach
is checked by similar Kohn-Sham calculations for the exactly solvable Calogero
model.Comment: 5 pages, 2 figure
- …
