49,836 research outputs found

    From scattering theory to complex wave dynamics in non-hermitian PT-symmetric resonators

    Get PDF
    I review how methods from mesoscopic physics can be applied to describe the multiple wave scattering and complex wave dynamics in non-hermitian PT-symmetric resonators, where an absorbing region is coupled symmetrically to an amplifying region. Scattering theory serves as a convenient tool to classify the symmetries beyond the single-channel case and leads to effective descriptions which can be formulated in the energy domain (via Hamiltonians) and in the time domain (via time evolution operators). These models can then be used to identify the mesoscopic time and energy scales which govern the spectral transition from real to complex eigenvalues. The possible presence of magneto-optical effects (a finite vector potential) in multichannel systems leads to a variant (termed PTT' symmetry) which imposes the same spectral constraints as PT symmetry. I also provide multichannel versions of generalized flux-conservation laws.Comment: 10 pages, 5 figures, minireview for a theme issue, Philosophical Transactions of the Royal Society

    H-MAC: A Hybrid MAC Protocol for Wireless Sensor Networks

    Full text link
    In this paper, we propose a hybrid medium access control protocol (H-MAC) for wireless sensor networks. It is based on the IEEE 802.11's power saving mechanism (PSM) and slotted aloha, and utilizes multiple slots dynamically to improve performance. Existing MAC protocols for sensor networks reduce energy consumptions by introducing variation in an active/sleep mechanism. But they may not provide energy efficiency in varying traffic conditions as well as they did not address Quality of Service (QoS) issues. H-MAC, the propose MAC protocol maintains energy efficiency as well as QoS issues like latency, throughput, and channel utilization. Our numerical results show that H-MAC has significant improvements in QoS parameters than the existing MAC protocols for sensor networks while consuming comparable amount of energy.Comment: 10 pages, IJCNC Journal 201

    Glassy dynamics in granular compaction

    Full text link
    Two models are presented to study the influence of slow dynamics on granular compaction. It is found in both cases that high values of packing fraction are achieved only by the slow relaxation of cooperative structures. Ongoing work to study the full implications of these results is discussed.Comment: 12 pages, 9 figures; accepted in J. Phys: Condensed Matter, proceedings of the Trieste workshop on 'Unifying concepts in glass physics

    Dynamics of Shear-Transformation Zones in Amorphous Plasticity: Formulation in Terms of an Effective Disorder Temperature

    Full text link
    This investigation extends earlier studies of a shear-transformation-zone (STZ) theory of plastic deformation in amorphous solids. My main purpose here is to explore the possibility that the configurational degrees of freedom of such systems fall out of thermodynamic equilibrium with the heat bath during persistent mechanical deformation, and that the resulting state of configurational disorder may be characterized by an effective temperature. The further assumption that the population of STZ's equilibrates with the effective temperature allows the theory to be compared directly with experimentally measured properties of metallic glasses, including their calorimetric behavior. The coupling between the effective temperature and mechanical deformation suggests an explanation of shear-banding instabilities.Comment: 29 pages, 11 figure

    Exponential sensitivity of noise-driven switching in genetic networks

    Full text link
    Cells are known to utilize biochemical noise to probabilistically switch between distinct gene expression states. We demonstrate that such noise-driven switching is dominated by tails of probability distributions and is therefore exponentially sensitive to changes in physiological parameters such as transcription and translation rates. However, provided mRNA lifetimes are short, switching can still be accurately simulated using protein-only models of gene expression. Exponential sensitivity limits the robustness of noise-driven switching, suggesting cells may use other mechanisms in order to switch reliably

    Density-functional theory for fermions in the unitary regime

    Full text link
    In the unitary regime, fermions interact strongly via two-body potentials that exhibit a zero range and a (negative) infinite scattering length. The energy density is proportional to the free Fermi gas with a proportionality constant ξ\xi. We use a simple density functional parametrized by an effective mass and the universal constant ξ\xi, and employ Kohn-Sham density-functional theory to obtain the parameters from fit to one exactly solvable two-body problem. This yields ξ=0.42\xi=0.42 and a rather large effective mass. Our approach is checked by similar Kohn-Sham calculations for the exactly solvable Calogero model.Comment: 5 pages, 2 figure
    corecore