3,137 research outputs found

    Scalp cooling with adjuvant/neoadjuvant chemotherapy for breast cancer and the risk of scalp metastases: systematic review and meta-analysis.

    Get PDF
    PurposeThe risk of scalp metastases in patients using scalp cooling for preservation of hair during chemotherapy has been a concern but is poorly described.MethodsA systematic review and meta-analysis of longitudinal studies was undertaken to evaluate the effect of scalp cooling versus no scalp cooling on the risk of scalp metastasis in patients treated for breast cancer with chemotherapy. Electronic databases, journal specific, and hand searches of articles identified were searched. Patients were matched based on disease, treatment, lack of metastatic disease, and sex.ResultsA total of 24 full-text articles were identified for review. Of these articles, ten quantified the incidence of scalp metastasis with scalp cooling over time. For scalp cooling, 1959 patients were evaluated over an estimated mean time frame of 43.1 months. For no scalp cooling, 1238 patients were evaluated over an estimated mean time frame of 87.4 months. The incidence rate of scalp metastasis in the scalp cooling group versus the no scalp cooling group was 0.61% (95% CI 0.32-1.1%) versus 0.41% (95% CI 0.13-0.94%); P = 0.43.ConclusionThe incidence of scalp metastases was low regardless of scalp cooling. This analysis suggests that scalp cooling does not increase the incidence of scalp metastases

    Assessing the role of dispersed floralresources for managed bees in providingsupporting ecosystem services for croppollination

    Get PDF
    Most pollination ecosystem services studies have focussed on wild pollinators and their dependence on natural floral resources adjacent to crop fields. However, managed pollinators depend on a mixture of floral resources that are spatially separated from the crop field. Here, we consider the supporting role these resources play as an ecosystem services provider to quantify the use and availability of floral resources, and to estimate their relative contribution to support pollination services of managed honeybees. Beekeepers supplying pollination services to the Western Cape deciduous fruit industry were interviewed to obtain information on their use of floral resources. For 120 apiary sites, we also analysed floral resources within a two km radius of each site based on geographic data. The relative availability of floral resources at sites was compared to regional availability. The relative contribution of floral resources-types to sustain managed honeybees was estimated. Beekeepers showed a strong preference for eucalypts and canola. Beekeepers selectively placed more hives at sites with eucalypt and canola and less with natural vegetation. However, at the landscape-scale, eucalypt was the least available resource, whereas natural vegetation was most common. Based on analysis of apiary sites, we estimated that 700,818 ha of natural vegetation, 73,910 ha of canola fields, and 10,485 ha of eucalypt are used to support the managed honeybee industry in the Western Cape. Whereas the Cape managed honeybee system uses a bee native to the region, alien plant species appear disproportionately important among the floral resources being exploited. We suggest that an integrated approach, including evidence from interview and landscape data, and fine-scale biological data is needed to study floral resources supporting managed honeybees

    Quantum interference due to crossed Andreev reflection in a d-wave superconductor with two nano-contacts

    Full text link
    The crossed Andreev reflection in a hybrid nanostructure consisting of a d-wave superconductor and two quantum wires is theoretically studied. When the (110) oriented surface of the superconductor is in contact with the wires parallel and placed close to each other, the Andreev bound state is formed by the crossed Andreev reflection. The conductance has two resonance peaks well below the gap structure in the case of tunnel contacts. These peaks originate from the bonding and antibonding Andreev bound states of hole wave functions.Comment: 4 pages, 3 figure

    The domination of Saturn's low latitude ionosphere by ring `rain'

    Get PDF
    Saturn's ionosphere is produced when the otherwise neutral atmosphere is exposed to a flow of energetic charged particles or solar radiation. At low latitudes the latter should result in a weak planet-wide glow in infrared (IR), corresponding to the planet's uniform illumination by the Sun. The observed low-latitude ionospheric electron density is lower and the temperature higher than predicted by models. A planet-ring magnetic connection has been previously suggested in which an influx of water from the rings could explain the lower than expected electron densities in Saturn's atmosphere. Here we report the detection of a pattern of features, extending across a broad latitude band from ~25 to 60 degrees, that is superposed on the lower latitude background glow, with peaks in emission that map along the planet's magnetic field lines to gaps in Saturn's rings. This pattern implies the transfer of charged water products from the ring-plane to the ionosphere, revealing the influx on a global scale, flooding between 30 to 43% of the planet's upper-atmospheric surface. This ring `rain' plays a fundamental role in modulating ionospheric emissions and suppressing electron densities.Comment: 10 pages, 3 figures. Published in Nature, April 201

    redMaPPer III: A Detailed Comparison of the Planck 2013 and SDSS DR8 RedMaPPer Cluster Catalogs

    Full text link
    We compare the Planck Sunyaev-Zeldovich (SZ) cluster sample (PSZ1) to the Sloan Digital Sky Survey (SDSS) redMaPPer catalog, finding that all Planck clusters within the redMaPPer mask and within the redshift range probed by redMaPPer are contained in the redMaPPer cluster catalog. These common clusters define a tight scaling relation in the richness-SZ mass (λ\lambda--MSZM_{SZ}) plane, with an intrinsic scatter in richness of σλMSZ=0.266±0.017\sigma_{\lambda|M_{SZ}} = 0.266 \pm 0.017. The corresponding intrinsic scatter in true cluster halo mass at fixed richness is 21%\approx 21\%. The regularity of this scaling relation is used to identify failures in both the redMaPPer and Planck cluster catalogs. Of the 245 galaxy clusters in common, we identify three failures in redMaPPer and 36 failures in the PSZ1. Of these, at least 12 are due to clusters whose optical counterpart was correctly identified in the PSZ1, but where the quoted redshift for the optical counterpart in the external data base used in the PSZ1 was incorrect. The failure rates for redMaPPer and the PSZ1 are 1.2%1.2\% and 14.7%14.7\% respectively, or 9.8% in the PSZ1 after subtracting the external data base errors. We have further identified 5 PSZ1 sources that suffer from projection effects (multiple rich systems along the line-of-sight of the SZ detection) and 17 new high redshift (z0.6z\gtrsim 0.6) cluster candidates of varying degrees of confidence. Should all of the high-redshift cluster candidates identified here be confirmed, we will have tripled the number of high redshift Planck clusters in the SDSS region. Our results highlight the power of multi-wavelength observations to identify and characterize systematic errors in galaxy cluster data sets, and clearly establish photometric data both as a robust cluster finding method, and as an important part of defining clean galaxy cluster samples.Comment: comments welcom

    The quest for H3+_3^+ at Neptune: deep burn observations with NASA IRTF iSHELL

    Get PDF
    Emission from the molecular ion H3+_3^+ is a powerful diagnostic of the upper atmosphere of Jupiter, Saturn, and Uranus, but it remains undetected at Neptune. In search of this emission, we present near-infrared spectral observations of Neptune between 3.93 and 4.00 μ\mum taken with the newly commissioned iSHELL instrument on the NASA Infrared Telescope Facility in Hawaii, obtained 17-20 August 2017. We spent 15.4 h integrating across the disk of the planet, yet were unable to unambiguously identify any H3+_3^+ line emissions. Assuming a temperature of 550 K, we derive an upper limit on the column integrated density of 1.00.8+1.2×10131.0^{+1.2}_{-0.8}\times10^{13} m2^{-2}, which is an improvement of 30\% on the best previous observational constraint. This result means that models are over-estimating the density by at least a factor of 5, highlighting the need for renewed modelling efforts. A potential solution is strong vertical mixing of polyatomic neutral species from Neptune's upper stratosphere to the thermosphere, reacting with H3+_3^+, thus greatly reducing the column integrated H3+_3^+ densities. This upper limit also provide constraints on future attempts at detecting H3+_3^+ using the James Webb Space Telescope.Comment: 8 pages, 6 figures, published in Monthly Notices of the Royal Astronomical Societ

    Ambipolar charge injection and transport in a single pentacene monolayer island

    Full text link
    Electrons and holes are locally injected in a single pentacene monolayer island. The two-dimensional distribution and concentration of the injected carriers are measured by electrical force microscopy. In crystalline monolayer islands, both carriers are delocalized over the whole island. On disordered monolayer, carriers stay localized at their injection point. These results provide insight into the electronic properties, at the nanometer scale, of organic monolayers governing performances of organic transistors and molecular devices.Comment: To be published in Nano Letter

    Seasonal Variability In The Ionosphere Of Uranus

    Get PDF
    Infrared ground-based observations using IRTF, UKIRT, and Keck II of Uranus have been analyzed as to identify the long-term behavior of the H-3(+) ionosphere. Between 1992 and 2008 there are 11 individual observing runs, each recording emission from the H-3(+) Q branch emission around 4 mu m through the telluric L' atmospheric window. The column-averaged rotational H-3(+) temperature ranges between 715 K in 1992 and 534 K in 2008, with the linear fit to all the run-averaged temperatures decreasing by 8 K year(-1). The temperature follows the fractional illumination curve of the planet, declining from solstice (1985) to equinox (2007). Variations in H-3(+) column density do not appear to be correlated to either solar cycle phase or season. The radiative cooling by H-3(+) is similar to 10 times larger than the ultraviolet solar energy being injected to the atmosphere. Despite the fact that the solar flux alone is incapable of heating the atmosphere to the observed temperatures, the geometry with respect to the Sun remains an important driver in determining the thermospheric temperature. Therefore, the energy source that heats the thermosphere must be linked to solar mechanisms. We suggest that this may be in the form of conductivity created by solar ionization of atmospheric neutrals and/or seasonally dependent magnetospherically driven current systems.STFC PP/E/000983/1, ST/G0022223/1RCUKGemini ObservatoryNational Aeronautics and Space Administration (NASA) NXX08A043G, NNX08AE38AAstronom

    Development of power conversion devices for complexes of automation and stabilization of electric power supply systems for spacecraft

    Get PDF
    В статье рассматривается развитие силовых преобразовательных устройств для комплексов автоматики и стабилизации систем электропитания космических аппаратов. Приведены примеры построения различных комплексов автоматики и стабилизации. Проведен их сравнительный анализ. Определены основные современные принципы построения КАС и СЭП КА.The article deals with the development of power conversion devices for automation and stabilization systems for electrical power supply systems for space vehicles. Examples of the construction of various automation and stabilization complexes are given. Their comparative analysis is carried out. The main modern principles of construction of ASC and EPS SPACECRAFT are determined

    CARMA observations of massive Planck-discovered cluster candidates at z>0.5 associated with WISE overdensities: Breaking the size-flux degeneracy

    Get PDF
    We use a Bayesian software package to analyze CARMA-8 data towards 19 unconfirmed Planck SZ-cluster candidates from Rodriguez-Gonzalvez et al. (2015), that are associated with significant overdensities in WISE. We used two cluster parameterizations, one based on a (fixed shape) generalized-NFW pressure profile and another based on a beta-gas-density profile (with varying shape parameters) to obtain parameter estimates for the nine CARMA-8 SZ-detected clusters. We find our sample is comprised of massive, Y_{500}=0.0010 \pm 0.0015 arcmin^2, relatively compact, theta_{500}= 3.9 \pm 2.0 arcmin systems. Results from the beta model show that our cluster candidates exhibit a heterogeneous set of brightness-temperature profiles. Comparison of Planck and CARMA-8 measurements showed good agreement in Y_{500} and an absence of obvious biases. We estimated the total cluster mass M_{500} as a function of z for one of the systems; at the preferred photometric redshift of 0.5, the derived mass, M_{500} \approx 0.8 \pm 0.2 \times 10^{15} Msun. Spectroscopic Keck/MOSFIRE data confirmed a galaxy member of one of our cluster candidates to be at z=0.565. Applying a Planck prior in Y_{500} to the CARMA-8 results reduces uncertainties for both parameters by a factor >4, relative to the independent Planck or CARMA-8 measurements. We here demonstrate a powerful technique to find massive clusters at intermediate z \gtrsim 0.5 redshifts using a cross-correlation between Planck and WISE data, with high-resolution follow-up with CARMA-8. We also use the combined capabilities of Planck and CARMA-8 to obtain a dramatic reduction by a factor of several, in parameter uncertainties.Comment: 26 pages, 8 figures, appearing in MNRAS (responded to referee report
    corecore