847 research outputs found
Perturbations of the local gravity field due to mass distribution on precise measuring instruments: a numerical method applied to a cold atom gravimeter
We present a numerical method, based on a FEM simulation, for the
determination of the gravitational field generated by massive objects, whatever
geometry and space mass density they have. The method was applied for the
determination of the self gravity effect of an absolute cold atom gravimeter
which aims at a relative uncertainty of 10-9. The deduced bias, calculated with
a perturbative treatment, is finally presented. The perturbation reaches (1.3
\pm 0.1) \times 10-9 of the Earth's gravitational field.Comment: 12 pages, 7 figure
Influence of chirping the Raman lasers in an atom gravimeter: phase shifts due to the Raman light shift and to the finite speed of light
We present here an analysis of the influence of the frequency dependence of
the Raman laser light shifts on the phase of a Raman-type atom gravimeter.
Frequency chirps are applied to the Raman lasers in order to compensate gravity
and ensure the resonance of the Raman pulses during the interferometer. We show
that the change in the Raman light shift when this chirp is applied only to one
of the two Raman lasers is enough to bias the gravity measurement by a fraction
of Gal (Gal~=~~m/s). We also show that this effect is
not compensated when averaging over the two directions of the Raman wavevector
. This thus constitutes a limit to the rejection efficiency of the
-reversal technique. Our analysis allows us to separate this effect from the
effect of the finite speed of light, which we find in perfect agreement with
expected values. This study highlights the benefit of chirping symmetrically
the two Raman lasers
Comparison between two mobile absolute gravimeters: optical versus atomic interferometers
We report a comparison between two absolute gravimeters: the LNE-SYRTE cold
atoms gravimeter and FG5#220 of Leibniz Universit\"at of Hannover. They rely on
different principles of operation: atomic and optical interferometry. Both are
movable which enabled them to participated to the last International Comparison
of Absolute Gravimeters (ICAG'09) at BIPM. Immediately after, their bilateral
comparison took place in the LNE watt balance laboratory and showed an
agreement of 4.3 +/- 6.4 {\mu}Gal
The electric double layer has a life of its own
Using molecular dynamics simulations with recently developed importance
sampling methods, we show that the differential capacitance of a model ionic
liquid based double-layer capacitor exhibits an anomalous dependence on the
applied electrical potential. Such behavior is qualitatively incompatible with
standard mean-field theories of the electrical double layer, but is consistent
with observations made in experiment. The anomalous response results from
structural changes induced in the interfacial region of the ionic liquid as it
develops a charge density to screen the charge induced on the electrode
surface. These structural changes are strongly influenced by the out-of-plane
layering of the electrolyte and are multifaceted, including an abrupt local
ordering of the ions adsorbed in the plane of the electrode surface,
reorientation of molecular ions, and the spontaneous exchange of ions between
different layers of the electrolyte close to the electrode surface. The local
ordering exhibits signatures of a first-order phase transition, which would
indicate a singular charge-density transition in a macroscopic limit
Self-Motions of General 3-RPR Planar Parallel Robots
This paper studies the kinematic geometry of general 3-RPR planar parallel
robots with actuated base joints. These robots, while largely overlooked, have
simple direct kinematics and large singularity-free workspace. Furthermore,
their kinematic geometry is the same as that of a newly developed parallel
robot with SCARA-type motions. Starting from the direct and inverse kinematic
model, the expressions for the singularity loci of 3-RPR planar parallel robots
are determined. Then, the global behaviour at all singularities is
geometrically described by studying the degeneracy of the direct kinematic
model. Special cases of self-motions are then examined and the degree of
freedom gained in such special configurations is kinematically interpreted.
Finally, a practical example is discussed and experimental validations
performed on an actual robot prototype are presented
Probabilistic analysis of the upwind scheme for transport
We provide a probabilistic analysis of the upwind scheme for
multi-dimensional transport equations. We associate a Markov chain with the
numerical scheme and then obtain a backward representation formula of
Kolmogorov type for the numerical solution. We then understand that the error
induced by the scheme is governed by the fluctuations of the Markov chain
around the characteristics of the flow. We show, in various situations, that
the fluctuations are of diffusive type. As a by-product, we prove that the
scheme is of order 1/2 for an initial datum in BV and of order 1/2-a, for all
a>0, for a Lipschitz continuous initial datum. Our analysis provides a new
interpretation of the numerical diffusion phenomenon
Estimation of Fiber Orientations Using Neighborhood Information
Data from diffusion magnetic resonance imaging (dMRI) can be used to
reconstruct fiber tracts, for example, in muscle and white matter. Estimation
of fiber orientations (FOs) is a crucial step in the reconstruction process and
these estimates can be corrupted by noise. In this paper, a new method called
Fiber Orientation Reconstruction using Neighborhood Information (FORNI) is
described and shown to reduce the effects of noise and improve FO estimation
performance by incorporating spatial consistency. FORNI uses a fixed tensor
basis to model the diffusion weighted signals, which has the advantage of
providing an explicit relationship between the basis vectors and the FOs. FO
spatial coherence is encouraged using weighted l1-norm regularization terms,
which contain the interaction of directional information between neighbor
voxels. Data fidelity is encouraged using a squared error between the observed
and reconstructed diffusion weighted signals. After appropriate weighting of
these competing objectives, the resulting objective function is minimized using
a block coordinate descent algorithm, and a straightforward parallelization
strategy is used to speed up processing. Experiments were performed on a
digital crossing phantom, ex vivo tongue dMRI data, and in vivo brain dMRI data
for both qualitative and quantitative evaluation. The results demonstrate that
FORNI improves the quality of FO estimation over other state of the art
algorithms.Comment: Journal paper accepted in Medical Image Analysis. 35 pages and 16
figure
The Association Between Birthweight and Current Blood Pressure: A Cross-Sectional Study in an Australian Aboriginal Community
Objectives: To study the relationship of blood pressure to birthweight and current body mass index in a population with high rates of low birthweight (< 2.5 kg). Design: A cross-sectional population screening program conducted between 1992 and 1998, with retrospective retrieval of birthweights. Setting: A remote coastal Australian Aboriginal community with a high prevalence of diabetes, cardiovascular and renal disease. Participants: Eighty-two per cent of the community members (1473/1805) were screened. Birthweights were available for 767 (71%) of the screened participants aged 7-43 years. Main outcome measures: The association between birthweight and current blood pressure, accounting for current body mass index. Results: Mean birthweights were low, and 18% of children and 35% of adults had been low-birthweight babies. In children (7-17 years), blood pressure was not correlated with birthweight, but in adults there was an inverse correlation - a 1 kg increase in birthweight was associated with a 2.9 mmHg (95% CI, 0.3-5.5 mmHg) decrease in systolic blood pressure, after adjusting for age, sex and current weight. Overweight adults with low birthweight had the highest blood pressures. Conclusions: Low birthweight is significantly associated with higher blood pressure in adult life, and the effect is amplified by higher current weight. Given the high rates of low birthweight in Aboriginal people in remote areas, and the detrimental effect of higher blood pressures on chronic diseases (currently present in epidemic proportions), interventions should focus on improving birthweights and on weight control in adolescents and adults. Special attention should be paid to children with low birthweight to avoid their becoming overweight in adult life
Quantitative analysis by renormalized entropy of invasive electroencephalograph recordings in focal epilepsy
Invasive electroencephalograph (EEG) recordings of ten patients suffering
from focal epilepsy were analyzed using the method of renormalized entropy.
Introduced as a complexity measure for the different regimes of a dynamical
system, the feature was tested here for its spatio-temporal behavior in
epileptic seizures. In all patients a decrease of renormalized entropy within
the ictal phase of seizure was found. Furthermore, the strength of this
decrease is monotonically related to the distance of the recording location to
the focus. The results suggest that the method of renormalized entropy is a
useful procedure for clinical applications like seizure detection and
localization of epileptic foci.Comment: 10 pages, 5 figure
In Situ NMR Spectroscopy of Supercapacitors: Insight into the Charge Storage Mechanism
Electrochemical capacitors, commonly known as supercapacitors, are important energy storage devices with high power capabilities and long cycle lives. Here we report the development and application of in situ nuclear magnetic resonance(NMR) methodologies to study changes at the electrode−electrolyte interface in working devices as they charge and discharge. For a supercapacitor comprising activated carbon electrodes and an organic electrolyte, NMR experiments carried out at different charge states allow quantification of the number of charge storing species and show that there are at least two distinct charge storage regimes. At cell voltages below 0.75 V, electrolyte anions are increasingly desorbed from the carbon micropores at the negative electrode, while at the positive electrode there is little change in the number of anions that are adsorbed as the voltage is increased. However, above a cell voltage of 0.75 V, dramatic increases in the amount of adsorbed anions in the positive electrode are observed while anions continue to be desorbed at the negative electrode. NMR experiments with simultaneous cyclic voltammetry show that supercapacitor charging causes marked changes to the local environments of charge storing species, with periodic changes of their chemical shift observed. NMR calculations on a model carbon fragment show that the addition and removal of electrons from a delocalized system should lead to considerable increases in the nucleus-independent chemical shift of nearby species, in agreement with our experimental observations
- …
