3,343 research outputs found
Repetitive Segmental Structure of the Transducin β Subunit: Homology with the CDC4 Gene and Identification of Related mRNAs
Retinal transducin, a guanine nucleotide regulatory protein (referred to as a G protein) that activates a cGMP phosphodiesterase in photoreceptor cells, is comprised of three subunits. We have identified and analyzed cDNA clones of the bovine transducin β subunit that may be highly conserved or identical to that in other G proteins. From the cDNA nucleotide sequence of the entire coding region, the primary structure of a 340-amino acid protein was deduced. The encoded β subunit has a Mr of 37,375 and is comprised of repetitive homologous segments arranged in tandem. Furthermore, significant homology in primary structure and segmental sequence exists between the β subunit and the yeast CDC4 gene product. The Mr 37,375 β subunit polypeptide is encoded by a 2.9-kilobase (kb) mRNA. However, there exists in retina other β-related mRNAs that are divergent from the 2.9-kb mRNA on the basis of oligonucleotide and primer-extended probe hybridizations. All mammalian tissues and clonal cell lines that have been examined contain at least two β-related mRNAs, usually 1.8 and 2.9 kb in length. These results suggest that the mRNAs are the processed products of a small number of closely related genes or of a single highly complex β gene
Λ c + production in pp collisions at√ s=7 TeV and in p-Pb collisions at√ sNN=5.02 TeV
The pT-differential production cross section of prompt Λ c + charmed baryons was measured with the ALICE detector at the Large Hadron Collider (LHC) in pp collisions at s√=7 TeV and in p-Pb collisions at sNN−−−√=5.02 TeV at midrapidity. The Λ c + and Λ¯¯¯¯c¯¯¯ were reconstructed in the hadronic decay modes Λ c + → pK−π+, Λ c + → pK S 0 and in the semileptonic channel Λ c + → e+νeΛ (and charge conjugates). The measured values of the Λ c + /D0 ratio, which is sensitive to the c-quark hadronisation mechanism, and in particular to the production of baryons, are presented and are larger than those measured previously in different colliding systems, centre-of-mass energies, rapidity and pT intervals, where the Λ c + production process may differ. The results are compared with the expectations obtained from perturbative Quantum Chromodynamics calculations and Monte Carlo event generators. Neither perturbative QCD calculations nor Monte Carlo models reproduce the data, indicating that the fragmentation of heavy-flavour baryons is not well understood. The first measurement at the LHC of the Λ c + nuclear modification factor, RpPb, is also presented. The RpPb is found to be consistent with unity and with that of D mesons within the uncertainties, and consistent with a theoretical calculation that includes cold nuclear matter effects and a calculation that includes charm quark interactions with a deconfined medium
Stratospheric aircraft exhaust plume and wake chemistry studies
This report documents progress to date in an ongoing study to analyze and model emissions leaving a proposed High Speed Civil Transport (HSCT) from when the exhaust gases leave the engine until they are deposited at atmospheric scales in the stratosphere. Estimates are given for the emissions, summarizing relevant earlier work (CIAP) and reviewing current propulsion research efforts. The chemical evolution and the mixing and vortical motion of the exhaust are analyzed to track the exhaust and its speciation as the emissions are mixed to atmospheric scales. The species tracked include those that could be heterogeneously reactive on the surfaces of the condensed solid water (ice) particles and on exhaust soot particle surfaces. Dispersion and reaction of chemical constituents in the far wake are studied with a Lagrangian air parcel model, in conjunction with a radiation code to calculate the net heating/cooling. Laboratory measurements of heterogeneous chemistry of aqueous sulfuric acid and nitric acid hydrates are also described. Results include the solubility of HCl in sulfuric acid which is a key parameter for modeling stratospheric processing. We also report initial results for condensation of nitric acid trihydrate from gas phase H2O and HNO3
Measurements of e(+)e(-) pairs from open heavy flavor in p plus p and d plus A collisions at root S-NN=200 GeV
We report a measurement of e+e− pairs from semileptonic heavy-flavor decays in p+p collisions at √sNN=200 GeV. The e+e− pair yield from b¯b and c¯c is separated by exploiting a double differential fit done simultaneously in dielectron invariant mass and pT. We used three different event generators, pythia, mc@nlo, and powheg, to simulate the e+e− spectra from c¯c and b¯b production. The data can be well described by all three generators within the detector acceptance. However, when using the generators to extrapolate to 4π, significant differences are observed for the total cross section. These difference are less pronounced for b¯b than for c¯c. The same model dependence was observed in already published d+A data. The p+p data are also directly compared with d+A data in mass and pT, and within the statistical accuracy no nuclear modification is seen
Prompt and non-prompt J/ψ production and nuclear modification at mid-rapidity in p–Pb collisions at √sNN=5.02 TeV
A measurement of beauty hadron production at mid-rapidity in proton-lead collisions at a nucleon–nucleon centre-of-mass energy sNN−−−√=5.02 TeV is presented. The semi-inclusive decay channel of beauty hadrons into J/ψ is considered, where the J/ψ mesons are reconstructed in the dielectron decay channel at mid-rapidity down to transverse momenta of 1.3 GeV/c. The bb¯ production cross section at mid-rapidity, dσbb¯/dy, and the total cross section extrapolated over full phase space, σbb¯, are obtained. This measurement is combined with results on inclusive J/ψ production to determine the prompt J/ψ cross sections. The results in p–Pb collisions are then scaled to expectations from pp collisions at the same centre-of-mass energy to derive the nuclear modification factor RpPb, and compared to models to study possible nuclear modifications of the production induced by cold nuclear matter effects. RpPb is found to be smaller than unity at low pT for both J/ψ coming from beauty hadron decays and prompt J/ψ
W and Z boson production in p-Pb collisions at √sNN=5.02 TeV
The W and Z boson production was measured via the muonic decay channel in proton-lead collisions at sNN−−−√=5.02 TeV at the Large Hadron Collider with the ALICE detector. The measurement covers backward (−4.46 10 GeV/c are determined. The results are compared to theoretical calculations both with and without including the nuclear modification of the parton distribution functions. The W-boson production is also studied as a function of the collision centrality: the cross section of muons from W-boson decays is found to scale with the average number of binary nucleon-nucleon collisions within uncertainties
J/ψ Elliptic Flow in Pb-Pb Collisions at √sNN=5.02 TeV
We report a precise measurement of the J/ψ elliptic flow in Pb-Pb collisions at √sNN=5.02 TeV with the ALICE detector at the LHC. The J/ψ mesons are reconstructed at midrapidity (|y|<0.9) in the dielectron decay channel and at forward rapidity (2.5<y<4.0) in the dimuon channel, both down to zero transverse momentum. At forward rapidity, the elliptic flow v2 of the J/ψ is studied as a function of the transverse momentum and centrality. A positive v2 is observed in the transverse momentum range 2<pT<8 GeV/c in the three centrality classes studied and confirms with higher statistics our earlier results at √sNN=2.76 TeV in semicentral collisions. At midrapidity, the J/ψ v2 is investigated as a function of the transverse momentum in semicentral collisions and found to be in agreement with the measurements at forward rapidity. These results are compared to transport model calculations. The comparison supports the idea that at low pT the elliptic flow of the J/ψ originates from the thermalization of charm quarks in the deconfined medium but suggests that additional mechanisms might be missing in the models
Measuring K 0 S K ± interactions using Pb–Pb collisions at √sNN = 2 . 76 TeV
We present the first ever measurements of femtoscopic correlations between the Kos and K± particles. The analysis was performed on the data from Pb–Pb collisions at √sNN=2.76 TeV measured by the ALICE experiment. The observed femtoscopic correlations are consistent with final-state interactions proceeding via the a0(980) resonance. The extracted kaon source radius and correlation strength parameters for K os K- are found to be equal within the experimental uncertainties to those for K os K+ . Comparing the results of the present study with those from published identical-kaon femtoscopic studies by ALICE, mass and coupling parameters for the ao resonance are tested. Our results are also compatible with the interpretation of the ao having a tetraquark structure instead of that of a diquark
Online measurements of the emissions of intermediate-volatility and semi-volatile organic compounds from aircraft
A detailed understanding of the climate and air quality impacts of aviation requires measurements of the emissions of intermediate-volatility and semi-volatile organic compounds (I/SVOCs) from aircraft. Currently both the amount and chemical composition of aircraft I/SVOC emissions remain poorly characterized. Here we characterize I/SVOC emissions from aircraft, using a novel instrument for the online, quantitative measurement of the mass loading and composition of low-volatility organic vapors. Emissions from the NASA DC8 aircraft were sampled on the ground 143 m downwind of the engines and characterized as a function of engine power from idle (4% maximum rated thrust) through 85% power. Results show that I/SVOC emissions are highest during engine idle operating conditions, with decreasing but non-zero I/SVOC emissions at higher engine powers. Comparison of I/SVOC emissions with total hydrocarbon (THC) measurements, VOC measurements, and an established emissions profile indicates that I/SVOCs comprise 10–20% of the total organic gas-phase emissions at idle, and an increasing fraction of the total gas-phase organic emissions at higher powers. Positive matrix factorization of online mass spectra is used to identify three distinct types of I/SVOC emissions: aliphatic, aromatic and oxygenated. The volatility and chemical composition of the emissions suggest that unburned fuel is the dominant source of I/SVOCs at idle, while pyrolysis products make up an increasing fraction of the I/SVOCs at higher powers. Oxygenated I/SVOC emissions were detected at lower engine powers (≤30%) and may be linked to cracked, partially oxidized or unburned fuel components.United States. Dept. of Energy. Office of Science (Small Business Innovation Research Program Grant DE-SC0001666)United States. Environmental Protection Agency (National Center for Environmental Research Grant RD834560
Interferometry of Direct Photons in Central 280Pb+208Pb Collisions at 158A GeV
Two-particle correlations of direct photons were measured in central
208Pb+208Pb collisions at 158 AGeV. The invariant interferometric radii were
extracted for 100<K_T<300 MeV/c and compared to radii extracted from charged
pion correlations. The yield of soft direct photons, K_T<300 MeV/c, was
extracted from the correlation strength and compared to theoretical
calculations.Comment: 5 pages, 4 figure
- …
