4,646 research outputs found
Cooperative protein transport in cellular organelles
Compartmentalization into biochemically distinct organelles constantly
exchanging material is one of the hallmarks of eukaryotic cells. In the most
naive picture of inter-organelle transport driven by concentration gradients,
concentration differences between organelles should relax. We determine the
conditions under which cooperative transport, i.e. based on molecular
recognition, allows for the existence and maintenance of distinct organelle
identities. Cooperative transport is also shown to control the flux of material
transiting through a compartmentalized system, dramatically increasing the
transit time under high incoming flux. By including chemical processing of the
transported species, we show that this property provides a strong functional
advantage to a system responsible for protein maturation and sorting.Comment: 9 pages, 5 figure
Kaufverhaltensrelevante Effekte des Konsumentenvertrauens im Internet: Eine vergleichende Analyse von Online-Händlern
Living on the edge of chaos: minimally nonlinear models of genetic regulatory dynamics
Linearized catalytic reaction equations modeling e.g. the dynamics of genetic
regulatory networks under the constraint that expression levels, i.e. molecular
concentrations of nucleic material are positive, exhibit nontrivial dynamical
properties, which depend on the average connectivity of the reaction network.
In these systems the inflation of the edge of chaos and multi-stability have
been demonstrated to exist. The positivity constraint introduces a nonlinearity
which makes chaotic dynamics possible. Despite the simplicity of such minimally
nonlinear systems, their basic properties allow to understand fundamental
dynamical properties of complex biological reaction networks. We analyze the
Lyapunov spectrum, determine the probability to find stationary oscillating
solutions, demonstrate the effect of the nonlinearity on the effective in- and
out-degree of the active interaction network and study how the frequency
distributions of oscillatory modes of such system depend on the average
connectivity.Comment: 11 pages, 5 figure
Classification of All Poisson-Lie Structures on an Infinite-Dimensional Jet Group
A local classification of all Poisson-Lie structures on an
infinite-dimensional group of formal power series is given. All
Lie bialgebra structures on the Lie algebra {\Cal G}_{\infty} of
are also classified.Comment: 11 pages, AmSTeX fil
Quasiparticle Chirality in Epitaxial Graphene Probed at the Nanometer Scale
Graphene exhibits unconventional two-dimensional electronic properties
resulting from the symmetry of its quasiparticles, which leads to the concepts
of pseudospin and electronic chirality. Here we report that scanning tunneling
microscopy can be used to probe these unique symmetry properties at the
nanometer scale. They are reflected in the quantum interference pattern
resulting from elastic scattering off impurities, and they can be directly read
from its fast Fourier transform. Our data, complemented by theoretical
calculations, demonstrate that the pseudospin and the electronic chirality in
epitaxial graphene on SiC(0001) correspond to the ones predicted for ideal
graphene.Comment: 4 pages, 3 figures, minor change
Dynamics of gene expression and the regulatory inference problem
From the response to external stimuli to cell division and death, the
dynamics of living cells is based on the expression of specific genes at
specific times. The decision when to express a gene is implemented by the
binding and unbinding of transcription factor molecules to regulatory DNA.
Here, we construct stochastic models of gene expression dynamics and test them
on experimental time-series data of messenger-RNA concentrations. The models
are used to infer biophysical parameters of gene transcription, including the
statistics of transcription factor-DNA binding and the target genes controlled
by a given transcription factor.Comment: revised version to appear in Europhys. Lett., new titl
Toward an ecological aesthetics: music as emergence
In this article we intend to suggest some ecological based principles
to support the possibility of develop an ecological aesthetics. We consider that
an ecological aesthetics is founded in concepts as “direct perception”,
“acquisition of affordances and invariants”, “embodied embedded
perception” and so on. Here we will purpose that can be possible explain
especially soundscape music perception in terms of direct perception, working
with perception of first hand (in a Gibsonian sense). We will present notions
as embedded sound, detection of sonic affordances and invariants, and at the
end we purpose an experience with perception/action paradigm to make
soundscape music as emergence of a self-organized system
Scale-Free topologies and Activatory-Inhibitory interactions
A simple model of activatory-inhibitory interactions controlling the activity
of agents (substrates) through a "saturated response" dynamical rule in a
scale-free network is thoroughly studied. After discussing the most remarkable
dynamical features of the model, namely fragmentation and multistability, we
present a characterization of the temporal (periodic and chaotic) fluctuations
of the quasi-stasis asymptotic states of network activity. The double (both
structural and dynamical) source of entangled complexity of the system temporal
fluctuations, as an important partial aspect of the Correlation
Structure-Function problem, is further discussed to the light of the numerical
results, with a view on potential applications of these general results.Comment: Revtex style, 12 pages and 12 figures. Enlarged manuscript with major
revision and new results incorporated. To appear in Chaos (2006
Kaufverhaltensrelevante Effekte des Konsumentenvertrauens im Internet: Eine vergleichende Analyse von Online-Händlern
--
- …
