138 research outputs found
Local modes, phonons, and mass transport in solid He
We propose a model to treat the local motion of atoms in solid He as a
local mode. In this model, the solid is assumed to be described by the Self
Consistent Harmonic approximation, combined with an array of local modes. We
show that in the bcc phase the atomic local motion is highly directional and
correlated, while in the hcp phase there is no such correlation. The correlated
motion in the bcc phase leads to a strong hybridization of the local modes with
the T phonon branch, which becomes much softer than that obtained
through a Self Consistent Harmonic calculation, in agreement with experiment.
In addition we predict a high energy excitation branch which is important for
self-diffusion. Both the hybridization and the presence of a high energy branch
are a consequence of the correlation, and appear only in the bcc phase. We
suggest that the local modes can play the role in mass transport usually
attributed to point defects (vacancies). Our approach offers a more overall
consistent picture than obtained using vacancies as the predominant point
defect. In particular, we show that our approach resolves the long standing
controversy regarding the contribution of point defects to the specific heat of
solid He.Comment: 10 pages, 10 figure
Bcc He as a Coherent Quantum Solid
In this work we investigate implications of the quantum nature of bcc %
He. We show that it is a unique solid phase with both a lattice structure and
an Off-Diagonal Long Range Order of coherently oscillating local electric
dipole moments. These dipoles arise from the local motion of the atoms in the
crystal potential well, and oscillate in synchrony to reduce the dipolar
interaction energy. The dipolar ground-state is therefore found to be a
coherent state with a well defined global phase and a three-component complex
order parameter. The condensation energy of the dipoles in the bcc phase
stabilizes it over the hcp phase at finite temperatures. We further show that
there can be fermionic excitations of this ground-state and predict that they
form an optical-like branch in the (110) direction. A comparison with
'super-solid' models is also discussed.Comment: 12 pages, 8 figure
Long-range antiferromagnetic order in the S=1 chain compound LiVGe2O6
The phase transition in the compound LiVGe2O6 has been proposed as a unique
example of a spin-Peierls transition in an S=1 antiferromagnetic chain. We
report neutron and x-ray diffraction measurements of LiVGe2O6 above and below
the phase transition at T=24 K. No evidence is seen for any structural
distortion associated with the transition. The neutron results indicate that
the low temperature state is antiferromagnetic, driven by ferromagnetic
interchain couplings.Comment: 4 pages, 4 ps figures, REVTEX, submitted to PR
Pressure-dependence of electron-phonon coupling and the superconducting phase in hcp Fe - a linear response study
A recent experiment by Shimizu et al. has provided evidence of a
superconducting phase in hcp Fe under pressure. To study the
pressure-dependence of this superconducting phase we have calculated the phonon
frequencies and the electron-phonon coupling in hcp Fe as a function of the
lattice parameter, using the linear response (LR) scheme and the full potential
linear muffin-tin orbital (FP-LMTO) method. Calculated phonon spectra and the
Eliashberg functions indicate that conventional s-wave
electron-phonon coupling can definitely account for the appearance of the
superconducting phase in hcp Fe. However, the observed change in the transition
temperature with increasing pressure is far too rapid compared with the
calculated results. For comparison with the linear response results, we have
computed the electron-phonon coupling also by using the rigid muffin-tin (RMT)
approximation. From both the LR and the RMT results it appears that
electron-phonon interaction alone cannot explain the small range of volume over
which superconductivity is observed. It is shown that
ferromagnetic/antiferromagnetic spin fluctuations as well as scattering from
magnetic impurities (spin-ordered clusters) can account for the observed values
of the transition temperatures but cannot substantially improve the agreeemnt
between the calculated and observed presure/volume range of the superconducting
phase. A simplified treatment of p-wave pairing leads to extremely small ( K) transition temperatures. Thus our calculations seem to rule out
both - and - wave superconductivity in hcp Fe.Comment: 12 pages, submitted to PR
Peptides with Potential Cardioprotective Effects Derived from Dry-Cured Ham Byproducts
"This document is the unedited Author s version of a Submitted Work that was subsequently accepted for publication in Journal of Agricultural and Food Chemistry, copyright © American Chemical Society after peer review. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acs.jafc.8b05888"[EN] The interest in using food byproducts as a source of bioactive peptides has increased significantly in the recent years. The goal of this work was to determine the presence and stability of peptides showing angiotensin I-converting enzyme (ACE-I), endothelin-converting enzyme (ECE), dipeptidyl peptidase-IV (DPP-IV), and platelet-activating factor-acetylhydrolase (PAF-AH) inhibitory activity derived from dry-cured ham bones, which could exert cardiovascular health benefits. ACE-I and DPP-IV inhibitory peptides were stable against heating typically used in Mediterranean household cooking methods and also to in vitro digestion. PAF-AH inhibitory activity significantly increased following simulated gastrointestinal digestion whereas ECE inhibitory significantly decreased (P < 0.05). The mass spectrometry analysis revealed a notable degradation of hemoglobin-derived peptides after simulated digestion, and the release of a large number of dipeptides that may have contributed to the observed bioactivities. These results suggest that natural peptides from Spanish dry-cured ham bones could contribute to a positive impact on cardiovascular health.This study was funded by the Emerging Research Group Grant from Generalitat Valenciana in Spain (GV/2015/138). A Ramon y Cajal postdoctoral contract to L.M. is acknowledged. Proteomic analysis was performed in the proteomics facility of SCSIE University of Valencia that belongs to ProteoRed, PRB2-ISCIII, supported by grant PT13/0001.Gallego-Ibáñez, M.; Mora Soler, L.; Hayes, M.; Reig Riera, MM.; Toldrá Vilardell, F. (2019). Peptides with Potential Cardioprotective Effects Derived from Dry-Cured Ham Byproducts. Journal of Agricultural and Food Chemistry. 67(4):1115-1126. https://doi.org/10.1021/acs.jafc.8b05888S1115112667
Danger- and pathogen-associated molecular patterns recognition by pattern-recognition receptors and ion channels of the transient receptor potential family triggers the inflammasome activation in immune cells and sensory neurons.
An increasing number of studies show that the activation of the innate immune system and inflammatory mechanisms play an important role in the pathogenesis of numerous diseases. The innate immune system is present in almost all multicellular organisms and its activation occurs in response to pathogens or tissue injury via pattern-recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs). Intracellular pathways, linking immune and inflammatory response to ion channel expression and function, have been recently identified. Among ion channels, the transient receptor potential (TRP) channels are a major family of non-selective cation-permeable channels that function as polymodal cellular sensors involved in many physiological and pathological processes.In this review, we summarize current knowledge of interactions between immune cells and PRRs and ion channels of TRP families with PAMPs and DAMPs to provide new insights into the pathogenesis of inflammatory diseases. TRP channels have been found to interfere with innate immunity via both nuclear factor-kB and procaspase-1 activation to generate the mature caspase-1 that cleaves pro-interleukin-1ß cytokine into the mature interleukin-1ß.Sensory neurons are also adapted to recognize dangers by virtue of their sensitivity to intense mechanical, thermal and irritant chemical stimuli. As immune cells, they possess many of the same molecular recognition pathways for danger. Thus, they express PRRs including Toll-like receptors 3, 4, 7, and 9, and stimulation by Toll-like receptor ligands leads to induction of inward currents and sensitization in TRPs. In addition, the expression of inflammasomes in neurons and the involvement of TRPs in central nervous system diseases strongly support a role of TRPs in inflammasome-mediated neurodegenerative pathologies. This field is still at its beginning and further studies may be required.Overall, these studies highlight the therapeutic potential of targeting the inflammasomes in proinflammatory, autoinflammatory and metabolic disorders associated with undesirable activation of the inflammasome by using specific TRP antagonists, anti-human TRP monoclonal antibody or different molecules able to abrogate the TRP channel-mediated inflammatory signals
Observation of a new excitation in bcc solid 4He by inelastic neutron scattering
We report neutron scattering measurements of the phonons in bcc solid 4He. In
general, only 3 accoustic phonon branches should exist in a monoatomic cubic
crystal. In addition to these phonon branches, we found a new ''optic-like''
mode along the [110] direction. One possible interpretation of this new mode is
in terms of localized excitations unique to a quantum solid.Comment: Text and 4 figures, to appear in Phys. Rev. Let
Danger- and pathogen-associated molecular patterns recognition by pattern-recognition receptors and ion channels of the transient receptor potential family triggers the inflammasome activation in immune cells and sensory neurons
Recommended from our members
In vitro digested milk proteins: Evaluation of angiotensin-1-converting enzyme inhibitory and antioxidant activities, peptidomic profile, and mucin gene expression in HT29-MTX cells
Over the past decades, several studies investigated the health-promoting functions of milk peptides. However, to date many hurdles still exist regarding the widespread use of milk-derived bioactive peptides, as they may be degraded during gastrointestinal digestion. Thus, the aim of our study was to in vitro digest intact whey protein isolate (WPI) and casein proteins (CNP), mimicking in vivo digestion, to investigate their bioactive effects and to identify the potential peptides involved. Whey protein isolate and CNP were digested using a pepsin-pancreatin protocol and ultra-filtered (3-kDa cutoff membrane). A permeate (3 kDa) were obtained. Soy protein was included as a control (CTR). Angiotensin-1-converting enzyme inhibitory (ACE1-I) and antioxidant activity (AOX) were assessed and compared with those observed in undigested proteins and CTR. Furthermore, the permeate was characterized by nano-liquid chromatography electrospray ionization tandem mass spectrometry (LC-nano ESI MS/MS) using a shotgun peptidomic approach, and retentate was further digested with trypsin and analyzed by MS using a shotgun proteomic approach to identify potentially bioactive peptides. Further, the effects of WPI, CNP, and CTR retentate on cell metabolic activity and on mucus production (MUC5AC and MUC2 gene expression) were assessed in intestinal goblet HT29-MTX-E12 cells. Results showed that WPI permeate induced a significant ACE1-I inhibitory effect [49.2 ± 0.64% (SEM)] compared with undigested WPI, CNP permeate, and retentate or CTR permeate (10.40 ± 1.07%). A significant increase in AOX (1.58 ± 0.04 and 1.61 ± 0.02 µmol of trolox AOX equivalents per mg of protein, respectively) upon digestion was found in WPI. Potentially bioactive peptides associated with ACE1-I and antihypertensive effects were identified in WPI permeate and CNP retentate. At specific concentrations, WPI, CNP, and CTR retentate were able to stimulate metabolic activity in HT29-MTX-E12 cells. Expression of MUC5AC was increased by CNP retentate and unaltered by WPI retentate; MUC2 expression was significantly increased by 0.33 mg/g of CNP and reduced by 1.33 mg/g of CNP. Our results confirm that milk proteins may be rich sources of bioactive compounds, with the greatest beneficial potential of CNP at the intestinal goblet cell level
- …
