863 research outputs found

    Dissipative and stochastic geometric phase of a qubit within a canonical Langevin framework

    Get PDF
    Dissipative and stochastic effects in the geometric phase of a qubit are taken into account using a geometrical description of the corresponding open--system dynamics within a canonical Langevin framework based on a Caldeira--Leggett like Hamiltonian. By extending the Hopf fibration S3S2S^{3}\to S^{2} to include such effects, the exact geometric phase for a dissipative qubit is obtained, whereas numerical calculations are used to include finite temperature effects on it.Comment: 5 pages, 2 figure

    Phonon lineshapes in atom-surface scattering

    Get PDF
    Phonon lineshapes in atom-surface scattering are obtained from a simple stochastic model based on the so-called Caldeira-Leggett Hamiltonian. In this single-bath model, the excited phonon resulting from a creation or annihilation event is coupled to a thermal bath consisting of an infinite number of harmonic oscillators, namely the bath phonons. The diagonalization of the corresponding Hamiltonian leads to a renormalization of the phonon frequencies in terms of the phonon friction or damping coefficient. Moreover, when there are adsorbates on the surface, this single-bath model can be extended to a two-bath model accounting for the effect induced by the adsorbates on the phonon lineshapes as well as their corresponding lineshapes.Comment: 14 pages, 2 figure

    Quantum phase analysis with quantum trajectories: A step towards the creation of a Bohmian thinking

    Full text link
    We introduce a pedagogical discussion on Bohmian mechanics and its physical implications in connection with the important role played by the quantum phase in the dynamics of quantum processes. In particular, we focus on phenomena such as quantum coherence, diffraction, and interference, due to their historical relevance in the development of the quantum theory and their key role in a myriad of fundamental and applied problems of current interest.Comment: 10 pages, 5 figure

    Understanding interference experiments with polarized light through photon trajectories

    Get PDF
    Bohmian mechanics allows to visualize and understand the quantum-mechanical behavior of massive particles in terms of trajectories. As shown by Bialynicki-Birula, Electromagnetism also admits a hydrodynamical formulation when the existence of a wave function for photons (properly defined) is assumed. This formulation thus provides an alternative interpretation of optical phenomena in terms of photon trajectories, whose flow yields a pictorial view of the evolution of the electromagnetic energy density in configuration space. This trajectory-based theoretical framework is considered here to study and analyze the outcome from Young-type diffraction experiments within the context of the Arago-Fresnel laws. More specifically, photon trajectories in the region behind the two slits are obtained in the case where the slits are illuminated by a polarized monochromatic plane wave. Expressions to determine electromagnetic energy flow lines and photon trajectories within this scenario are provided, as well as a procedure to compute them in the particular case of gratings totally transparent inside the slits and completely absorbing outside them. As is shown, the electromagnetic energy flow lines obtained allow to monitor at each point of space the behavior of the electromagnetic energy flow and, therefore, to evaluate the effects caused on it by the presence (right behind each slit) of polarizers with the same or different polarization axes. This leads to a trajectory-based picture of the Arago-Fresnel laws for the interference of polarized light.Comment: 36 pages, 6 figure
    corecore