863 research outputs found
Dissipative and stochastic geometric phase of a qubit within a canonical Langevin framework
Dissipative and stochastic effects in the geometric phase of a qubit are
taken into account using a geometrical description of the corresponding
open--system dynamics within a canonical Langevin framework based on a
Caldeira--Leggett like Hamiltonian. By extending the Hopf fibration to include such effects, the exact geometric phase for a dissipative
qubit is obtained, whereas numerical calculations are used to include finite
temperature effects on it.Comment: 5 pages, 2 figure
Phonon lineshapes in atom-surface scattering
Phonon lineshapes in atom-surface scattering are obtained from a simple
stochastic model based on the so-called Caldeira-Leggett Hamiltonian. In this
single-bath model, the excited phonon resulting from a creation or annihilation
event is coupled to a thermal bath consisting of an infinite number of harmonic
oscillators, namely the bath phonons. The diagonalization of the corresponding
Hamiltonian leads to a renormalization of the phonon frequencies in terms of
the phonon friction or damping coefficient. Moreover, when there are adsorbates
on the surface, this single-bath model can be extended to a two-bath model
accounting for the effect induced by the adsorbates on the phonon lineshapes as
well as their corresponding lineshapes.Comment: 14 pages, 2 figure
Quantum phase analysis with quantum trajectories: A step towards the creation of a Bohmian thinking
We introduce a pedagogical discussion on Bohmian mechanics and its physical
implications in connection with the important role played by the quantum phase
in the dynamics of quantum processes. In particular, we focus on phenomena such
as quantum coherence, diffraction, and interference, due to their historical
relevance in the development of the quantum theory and their key role in a
myriad of fundamental and applied problems of current interest.Comment: 10 pages, 5 figure
Understanding interference experiments with polarized light through photon trajectories
Bohmian mechanics allows to visualize and understand the quantum-mechanical
behavior of massive particles in terms of trajectories. As shown by
Bialynicki-Birula, Electromagnetism also admits a hydrodynamical formulation
when the existence of a wave function for photons (properly defined) is
assumed. This formulation thus provides an alternative interpretation of
optical phenomena in terms of photon trajectories, whose flow yields a
pictorial view of the evolution of the electromagnetic energy density in
configuration space. This trajectory-based theoretical framework is considered
here to study and analyze the outcome from Young-type diffraction experiments
within the context of the Arago-Fresnel laws. More specifically, photon
trajectories in the region behind the two slits are obtained in the case where
the slits are illuminated by a polarized monochromatic plane wave. Expressions
to determine electromagnetic energy flow lines and photon trajectories within
this scenario are provided, as well as a procedure to compute them in the
particular case of gratings totally transparent inside the slits and completely
absorbing outside them. As is shown, the electromagnetic energy flow lines
obtained allow to monitor at each point of space the behavior of the
electromagnetic energy flow and, therefore, to evaluate the effects caused on
it by the presence (right behind each slit) of polarizers with the same or
different polarization axes. This leads to a trajectory-based picture of the
Arago-Fresnel laws for the interference of polarized light.Comment: 36 pages, 6 figure
- …
