119 research outputs found

    Circulating skeletal muscle related microRNAs profile in Piedmontese cattle during different age

    Get PDF
    Abstract Piedmontese cattle is known for double-muscle phenotype. MicroRNAs (miRNAs) play important role as regulators in skeletal muscle physiological processes, and we hypothesize that plasma miRNAs expression profiles could be affected by skeletal muscle growth status related to age. Plasma samples of cattle were collected during four different ages from first week of life until the time of commercial end of the fattening period before slaughter. Small-RNA sequencing data analysis revealed the presence of 40% of muscle-related miRNAs among the top 25 highly expressed miRNAs and, 19 miRNAs showed differential expression too. Using qRT-PCR, we validated in a larger bovine population, miRNAs involved in skeletal muscle physiology pathways. Comparing new-born with the other age groups, miR-10b, miR-126-5p, miR-143 and miR-146b were significantly up-regulated, whereas miR-21-5p, miR-221, miR-223 and miR-30b-5p were significantly down-regulated. High expression levels of miR-23a in all the groups were found. Myostatin, a negative regulator of skeletal muscle hypertrophy, was predicted as the target gene for miR-23a and miR-126-5p and we demonstrated their direct binding. Correlation analysis revealed association between miRNAs expression profiles and animals’ weights along the age. Circulating miRNAs could be promising for future studies on their biomarker potentialities to beef cattle selection

    Circulating skeletal muscle related microRNAs profile in Piedmontese cattle during different age

    Get PDF
    Piedmontese cattle is known for double-muscle phenotype. MicroRNAs (miRNAs) play important role as regulators in skeletal muscle physiological processes, and we hypothesize that plasma miRNAs expression profiles could be affected by skeletal muscle growth status related to age. Plasma samples of cattle were collected during four different ages from first week of life until the time of commercial end of the fattening period before slaughter. Small-RNA sequencing data analysis revealed the presence of 40% of muscle-related miRNAs among the top 25 highly expressed miRNAs and, 19 miRNAs showed differential expression too. Using qRT-PCR, we validated in a larger bovine population, miRNAs involved in skeletal muscle physiology pathways. Comparing new-born with the other age groups, miR-10b, miR-126-5p, miR-143 and miR-146b were significantly up-regulated, whereas miR-21-5p, miR-221, miR-223 and miR-30b-5p were significantly down-regulated. High expression levels of miR-23a in all the groups were found. Myostatin, a negative regulator of skeletal muscle hypertrophy, was predicted as the target gene for miR-23a and miR-126-5p and we demonstrated their direct binding. Correlation analysis revealed association between miRNAs expression profiles and animals’ weights along the age. Circulating miRNAs could be promising for future studies on their biomarker potentialities to beef cattle selection

    Degradação da estrutura do solo em "patches" em pastagens de alfafa

    Get PDF
    604-610Alfalfa (Medicago sativa) is the basic forage resource for milk production in the flat Pampa of the Santa Fe Province of Argentina. However, the presence of microrelief with patches threatens the expansion of the area cultivated with alfalfa. The lower productivity in the patches is attributed to the inferior soil physical quality. The objectives of this study were to quantify indicators of soil physical quality and to establish the soil properties that would affect the alfalfa productivity in patches (PA) and normal areas (NA). Additionally,the macro and micro nutrient contents in both areas were determined. The experiment was carried out on an Aquic Argiudoll. Eighteen sampling sites, nine in NA and nine in PA were established. At each site, undisturbed soil samples (5 × 5 cm cores) were collected to measure soil bulk density (Bd), soil resistance to root penetration (PR), effective stress (?), the water release curve and the least limiting water range (LLWR). Disturbed soil samples were also taken to determine macro and micronutrient contents, and particle size distribution. Non differences were detected for soil chemical properties between PA and NA. Aggregate size distribution indicated predominance of small aggregates in PA. Bd, PR and s were higher in PA than in NA, while the LLWR was narrower. Inadequate aeration under conditions of excessive soil moisture and inappropriate soil mechanical resistance when the soil is dry would affect alfalfa productivity. The overall results indicate that thesoil physical quality in PA is lower than in NA
    corecore