4,728 research outputs found
Differences in telomere length between sporadic and familial cutaneous melanoma
BACKGROUND:
Several pieces of evidence indicate that a complex relationship exists between constitutional telomere length (TL) and the risk of cutaneous melanoma. Although the general perception is that longer telomeres increase melanoma risk, some studies do not support this association. We hypothesise that discordant data are due to the characteristics of the studied populations.
OBJECTIVES:
To evaluate the association of telomere length with familial and sporadic melanoma.
METHODS:
TL was measured by multiplex quantitative PCR in leukocytes from 310 melanoma patients according to familial/sporadic and single/multiple cancers and 216 age-matched controls.
RESULTS:
Patients with sporadic melanoma were found to have shorter telomeres as compared to those with familial melanoma. In addition, shorter telomeres, while tending to reduce the risk of familial melanoma regardless of single or multiple tumors, nearly trebled the risk of single sporadic melanoma.
CONCLUSIONS:
This is the first time that TL has been correlated to opposite effects on melanoma risk according to the presence or absence of familial predisposition. Individual susceptibility to melanoma should be taken into account when assessing the role of TL as a risk factor. This article is protected by copyright. All rights reserved
Protective role of vitamin B6 (PLP) against DNA damage in Drosophila models of type 2 diabetes
Growing evidence shows that improper intake of vitamin B6 increases cancer risk and several studies indicate that diabetic patients have a higher risk of developing tumors. We previously demonstrated that in Drosophila the deficiency of Pyridoxal 5' phosphate (PLP), the active form of vitamin B6, causes chromosome aberrations (CABs), one of cancer prerequisites, and increases hemolymph glucose content. Starting from these data we asked if it was possible to provide a link between the aforementioned studies. Thus, we tested the effect of low PLP levels on DNA integrity in diabetic cells. To this aim we generated two Drosophila models of type 2 diabetes, the first by impairing insulin signaling and the second by rearing flies in high sugar diet. We showed that glucose treatment induced CABs in diabetic individuals but not in controls. More interestingly, PLP deficiency caused high frequencies of CABs in both diabetic models demonstrating that hyperglycemia, combined to reduced PLP level, impairs DNA integrity. PLP-depleted diabetic cells accumulated Advanced Glycation End products (AGEs) that largely contribute to CABs as α-lipoic acid, an AGE inhibitor, rescued not only AGEs but also CABs. These data, extrapolated to humans, indicate that low PLP levels, impacting on DNA integrity, may be considered one of the possible links between diabetes and cancer
Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV
The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8 TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
MiRNA deregulation targets specific pathways in leiomyosarcoma development: An in silico analysis
BackgroundMicroRNA (miRNA) mediate post-transcriptional gene repression and are involved in a variety of human diseases, including cancer. Soft tissue sarcomas are rare malignancies with a variety of histological subtypes which may occur virtually anywhere in the human body. Leiomyosarcoma is one of the most common subtypes, shows a smooth muscle phenotype and its cancerogenesis is still unclear. The aim of our study was to investigate the potential role of miRNA differential expression in leiomyosarcoma development.MethodsWe first employed the Sarcoma microRNA Expression Database, a repository that describes the patterns of over 1000 miRNA expression in various human sarcoma types, to identify differentially expressed miRNA comparing leiomyosarcoma and smooth muscle samples. Subsequently, we identified putative target genes of those miRNAs with the TargetScan prediction tool. Finally, we evaluated whether the retrieved pool of putative targets was enriched in genes belonging to specific molecular pathways by means of the Enrichr analysis tool. Protein-protein network analysis was analyzed by means of the STRING web tool.ResultsOut of 1120 miRNAs tested, the expression of 301 miRNAs was statistically significantly different between leiomyosarcoma and smooth muscle samples. The hypothetical targets could be predicted for 172 miRNAs. 438 genes were predicted to be the targets with high confidence (cumulative weighted context score cut-off level less than -1.0) and analyzed for belonging to specific molecular pathways. Pathway analysis suggested that RNA Polymerase III, tRNA functions and synaptic neurotransmission (with special regard to dopamine mediated signaling) could be involved in leiomyosarcoma development.ConclusionsOur results demonstrate that data mining of publicly available repositories can be useful to suggest molecular pathways underlying the pathogenesis of rare tumors such as leiomyosarcoma
- …
