1,813 research outputs found

    Magnetic properties of 3d-impurities substituted in GaAs

    Full text link
    We have calculated the magnetic properties of substituted 3d-impurities (Cr-Ni) in a GaAs host by means of first principles electronic structure calculations. We provide a novel model explaining the ferromagnetic long rang order of III-V dilute magnetic semiconductors. The origin of the ferromagnetism is shown to be due to delocalized spin-uncompensated As dangling bond electrons. Besides the quantitative prediction of the magnetic moments, our model provides an understanding of the halfmetallicity, and the raise of the critical temperature with the impurity concentration

    Phonon plasmon interaction in ternary group-III-nitrides

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Appl. Phys. Lett. 101, 041909 (2012) and may be found at https://doi.org/10.1063/1.4739415.Phonon-plasmon-coupling in the ternary group-III-nitrides InGaN and AlGaN is investigated experimentally and theoretically. Based on the observation of broadening and shifting of the A1(LO) mode in AlGaN upon Si-doping, a lineshape analysis was performed to determine the carrier concentration. The results obtained by this method are in excellent agreement to those from Hall measurements, confirming the validity of the employed model. Finally, neglecting phonon and plasmon damping, the Raman shift of the A1(LO) mode in dependence of the carrier concentration for AlGaN and InGaN is calculated. This enables a fast and contactless determination of carrier concentrations in the future.DFG, 43659573, SFB 787: Halbleiter - Nanophotonik: Materialien, Modelle, Bauelement

    Complex itinerant ferromagnetism in noncentrosymmetric Cr11Ge19

    Full text link
    The noncentrosymmetric ferromagnet Cr11Ge19 has been investigated by electrical transport, AC and DC magnetization, heat capacity, x-ray diffraction, resonant ultrasound spectroscopy, and first principles electronic structure calculations. Complex itinerant ferromagnetism in this material is indicated by nonlinearity in conventional Arrott plots, unusual behavior of AC susceptibility, and a weak heat capacity anomaly near the Curie temperature (88 K). The inclusion of spin wave excitations was found to be important in modeling the low temperature heat capacity. The temperature dependence of the elastic moduli and lattice constants, including negative thermal expansion along the c axis at low temperatures, indicate strong magneto-elastic coupling in this system. Calculations show strong evidence for itinerant ferromagnetism and suggest a noncollinear ground state may be expected

    Emergence of magnetism in graphene materials and nanostructures

    Full text link
    Magnetic materials and nanostructures based on carbon offer unique opportunities for future technological applications such as spintronics. This article reviews graphene-derived systems in which magnetic correlations emerge as a result of reduced dimensions, disorder and other possible scenarios. In particular, zero-dimensional graphene nanofragments, one-dimensional graphene nanoribbons, and defect-induced magnetism in graphene and graphite are covered. Possible physical mechanisms of the emergence of magnetism in these systems are illustrated with the help of computational examples based on simple model Hamiltonians. In addition, this review covers spin transport properties, proposed designs of graphene-based spintronic devices, magnetic ordering at finite temperatures as well as the most recent experimental achievements.Comment: tutorial-style review article -- 18 pages, 19 figure

    Finite-temperature magnetism of Fex_xPd1x_{1-x} and Cox_xPt1x_{1-x} alloys

    Full text link
    The finite-temperature magnetic properties of Fex_xPd1x_{1-x} and Cox_xPt1x_{1-x} alloys have been investigated. It is shown that the temperature-dependent magnetic behaviour of alloys, composed of originally magnetic and non-magnetic elements, cannot be described properly unless the coupling between magnetic moments at magnetic atoms (Fe,Co) mediated through the interactions with induced magnetic moments of non-magnetic atoms (Pd,Pt) is included. A scheme for the calculation of the Curie temperature (TCT_C) for this type of systems is presented which is based on the extended Heisenberg Hamiltonian with the appropriate exchange parameters JijJ_{ij} obtained from {\em ab-initio} electronic structure calculations. Within the present study the KKR Green's function method has been used to calculate the JijJ_{ij} parameters. A comparison of the obtained Curie temperatures for Fex_xPd1x_{1-x} and Cox_xPt1x_{1-x} alloys with experimental data shows rather good agreement.Comment: 10 pages, 12 figure

    Electronic structure and magnetism of equiatomic FeN

    Full text link
    In order to investigate the phase stability of equiatomic FeN compounds and the structure-dependent magnetic properties, the electronic structure and total energy of FeN with NaCl, ZnS and CsCl structures and various magnetic configurations are calculated using the first-principles TB-LMTO-ASA method. Among all the FeN phases considered, the antiferromagnetic NaCl structure with q=(00pi) is found to have the lowest energy at the theoretical equilibrium volume. However, the FM NaCl phase lies only 1mRyd higher. The estimated equilibrium lattice constant for nonmagnetic ZnS-type FeN agrees quite well with the experimental value, but for the AFM NaCl phase the estimated value is 6.7% smaller than that observed experimentally. For ZnS-type FeN, metastable magnetic states are found for volumes larger than the equilibrium value. On the basis of an analysis of the atom- and orbital-projected density of states and orbital-projected Crystal Orbital Hamilton Population, the iron-nitrogen interactions in NM ZnS, AFM NaCl and FM CsCl structures are discussed. The leading Fe-N interactions is due to the d-p iron-nitrogen hybridization, while considerable s-p and p-p hybridizations are also observed in all three phases. The iron magnetic moment in FeN is found to be highly sensitive to the nearest-neighboring Fe-N distance. In particular, the magnetic moment shows an abrupt drop from a value of about 2 muB to zero with the reduction of the Fe-N distance for the ZnS and CsCl structures.Comment: 12 pages, 6 figure

    Continuous isotopic composition measurements of tropospheric CO<sub>2</sub> at Jungfraujoch (3580 m a.s.l.), Switzerland: real-time observation of regional pollution events

    Get PDF
    A quantum cascade laser based absorption spectrometer (QCLAS) is applied for the first time to perform in situ, continuous and high precision isotope ratio measurements of CO<sub>2</sub> in the free troposphere. Time series of the three main CO<sub>2</sub> isotopologue mixing ratios (<sup>12</sup>C<sup>16</sup>CO<sub>2</sub>, <sup>13</sup>C<sup>16</sup>CO<sub>2</sub> and <sup>12</sup>C<sup>18</sup>O<sup>16</sup>O) have simultaneously been measured at one second time resolution over two years (from August 2008 to present) at the High Altitude Research Station Jungfraujoch (3580 m a.s.l., Switzerland). This work focuses on periods in February 2009 only, when sudden and pronounced enhancements in the tropospheric CO<sub>2</sub> were observed. These short-term changes were closely correlated with variations in CO mixing ratios measured at the same site, indicating combustion related emissions as potential source. The analytical precision of 0.046&permil; (at 50 s integration time) for both &delta;<sup>13</sup>C and &delta;<sup>18</sup>O and the high temporal resolution allowed the application of the Keeling plot method for source signature identification. The spatial origin of these CO<sub>2</sub> emission sources was then determined by backward Lagrangian particle dispersion simulations

    Correlated metals and the LDA+U method

    Full text link
    While LDA+U method is well established for strongly correlated materials with well localized orbitals, its application to weakly correlated metals is questionable. By extending the LDA Stoner approach onto LDA+U, we show that LDA+U enhances the Stoner factor, while reducing the density of states. Arguably the most important correlation effects in metals, fluctuation-induced mass renormalization and suppression of the Stoner factor, are missing from LDA+U. On the other hand, for {\it moderately} correlated metals LDA+U may be useful. With this in mind, we derive a new version of LDA+U that is consistent with the Hohenberg-Kohn theorem and can be formulated as a constrained density functional theory. We illustrate all of the above on concrete examples, including the controversial case of magnetism in FeAl.Comment: Substantial changes. In particular, examples of application of the proposed functional are adde

    New angles on top quark decay to a charged Higgs

    Full text link
    To properly discover a charged Higgs Boson (H±H^\pm) requires its spin and couplings to be determined. We investigate how to utilize \ttbar spin correlations to analyze the H±H^\pm couplings in the decay tbH+bτ+ντt\to bH^+\to b\tau^+\nu_\tau. Within the framework of a general Two-Higgs-Doublet Model, we obtain results on the spin analyzing coefficients for this decay and study in detail its spin phenomenology, focusing on the limits of large and small values for tanβ\tan\beta. Using a Monte Carlo approach to simulate full hadron-level events, we evaluate systematically how the H±τ±ντH^\pm\to\tau^\pm\nu_\tau decay mode can be used for spin analysis. The most promising observables are obtained from azimuthal angle correlations in the transverse rest frames of t(tˉ)t(\bar{t}). This method is particularly useful for determining the coupling structure of H±H^\pm in the large tanβ\tan\beta limit, where differences from the SM are most significant.Comment: 28 pages, 13 figures. Uses JHEP forma
    corecore