266 research outputs found

    Soliton blue-shift in tapered photonic crystal fiber

    Full text link
    We show that solitons undergo a strong blue shift in fibers with a dispersion landscape that varies along the direction of propagation. The experiments are based on a small-core photonic crystal fiber, tapered to have a core diameter that varies continuously along its length, resulting in a zero-dispersion wavelength that moves from 731 nm to 640 nm over the transition. The central wavelength of a soliton translates over 400 nm towards shorter wavelength. This accompanied by strong emission of radiation into the UV and IR spectral region. The experimental results are confirmed by numerical simulation.Comment: 10 pages, 4 figure

    Nonlinear wavelength conversion in photonic crystal fibers with three zero dispersion points

    Full text link
    In this theoretical study, we show that a simple endlessly single-mode photonic crystal fiber can be designed to yield, not just two, but three zero-dispersion wavelengths. The presence of a third dispersion zero creates a rich phase-matching topology, enabling enhanced control over the spectral locations of the four-wave-mixing and resonant-radiation bands emitted by solitons and short pulses. The greatly enhanced flexibility in the positioning of these bands has applications in wavelength conversion, supercontinuum generation and pair-photon sources for quantum optics

    Statistics of soliton-bearing systems with additive noise

    Full text link
    We present a consistent method to calculate the probability distribution of soliton parameters in systems with additive noise. Even though a weak noise is considered, we are interested in probabilities of large fluctuations (generally non-Gaussian) which are beyond perturbation theory. Our method is a further development of the instanton formalism (method of optimal fluctuation) based on a saddle-point approximation in the path integral. We first solve a fundamental problem of soliton statistics governing by noisy Nonlinear Schr\"odinger Equation (NSE). We then apply our method to optical soliton transmission systems using signal control elements (filters, amplitude and phase modulators).Comment: 4 pages. Submitted to PR

    Controlling pulse propagation in optical fibers through nonlinearity and dispersion management

    Full text link
    In case of the nonlinear Schr\"odinger equation with designed group velocity dispersion, variable nonlinearity and gain/loss; we analytically demonstrate the phenomenon of chirp reversal crucial for pulse reproduction. Two different scenarios are exhibited, where the pulses experience identical dispersion profiles, but show entirely different propagation behavior. Exact expressions for dynamical quasi-solitons and soliton bound-states relevant for fiber communication are also exhibited.Comment: 4 pages, 5 eps figure

    Suppression and Enhancement of Soliton Switching During Interaction in Periodically Twisted Birefringent Fiber

    Get PDF
    Soliton interaction in periodically twisted birefringent optical fibers has been analysed analytically with refernce to soliton switching. For this purpose we construct the exact general two-soliton solution of the associated coupled system and investigate its asymptotic behaviour. Using the results of our analytical approach we point out that the interaction can be used as a switch to suppress or to enhance soliton switching dynamics, if one injects multi-soliton as an input pulse in the periodically twisted birefringent fiber.Comment: 10 pages, 4 figures, Latex, submitted to Phys. Rev.

    On the boundary of the dispersion-managed soliton existence

    Full text link
    A breathing soliton-like structure in dispersion-managed (DM) optical fiber system is studied. It is proven that for negative average dispersion the breathing soliton is forbidden provided that a modulus of average dispersion exceed a threshold which depends on the soliton amplitude.Comment: LaTeX, 8 pages, to appear in JETP Lett. 72, #3 (2000

    Noise-induced perturbations of dispersion-managed solitons

    Full text link
    We study noise-induced perturbations of dispersion-managed solitons by developing soliton perturbation theory for the dispersion-managed nonlinear Schroedinger (DMNLS) equation, which governs the long-term behavior of optical fiber transmission systems and certain kinds of femtosecond lasers. We show that the eigenmodes and generalized eigenmodes of the linearized DMNLS equation around traveling-wave solutions can be generated from the invariances of the DMNLS equations, we quantify the perturbation-induced parameter changes of the solution in terms of the eigenmodes and the adjoint eigenmodes, and we obtain evolution equations for the solution parameters. We then apply these results to guide importance-sampled Monte-Carlo simulations and reconstruct the probability density functions of the solution parameters under the effect of noise.Comment: 12 pages, 6 figure

    Soliton back-action evading measurement using spectral filtering

    Get PDF
    We report on a back-action evading (BAE) measurement of the photon number of fiber optical solitons operating in the quantum regime. We employ a novel detection scheme based on spectral filtering of colliding optical solitons. The measurements of the BAE criteria demonstrate significant quantum state preparation and transfer of the input signal to the signal and probe outputs exiting the apparatus, displaying the quantum-nondemolition (QND) behavior of the experiment.Comment: 5 pages, 5 figure

    Observation of bright polariton solitons in a semiconductor microcavity

    Get PDF
    Microcavity polaritons are composite half-light half-matter quasi-particles, which have recently been demonstrated to exhibit rich physical properties, such as non-equilibrium Bose-Einstein condensation, parametric scattering and superfluidity. At the same time, polaritons have some important advantages over photons for information processing applications, since their excitonic component leads to weaker diffraction and stronger inter-particle interactions, implying, respectively, tighter localization and lower powers for nonlinear functionality. Here we present the first experimental observations of bright polariton solitons in a strongly coupled semiconductor microcavity. The polariton solitons are shown to be non-diffracting high density wavepackets, that are strongly localised in real space with a corresponding broad spectrum in momentum space. Unlike solitons known in other matter-wave systems such as Bose condensed ultracold atomic gases, they are non-equilibrium and rely on a balance between losses and external pumping. Microcavity polariton solitons are excited on picosecond timescales, and thus have significant benefits for ultrafast switching and transfer of information over their light only counterparts, semiconductor cavity lasers (VCSELs), which have only nanosecond response time

    On non-local variational problems with lack of compactness related to non-linear optics

    Full text link
    We give a simple proof of existence of solutions of the dispersion manage- ment and diffraction management equations for zero average dispersion, respectively diffraction. These solutions are found as maximizers of non-linear and non-local vari- ational problems which are invariant under a large non-compact group. Our proof of existence of maximizer is rather direct and avoids the use of Lions' concentration compactness argument or Ekeland's variational principle.Comment: 30 page
    corecore