6,154 research outputs found

    Multicultural Children\u27s Literature: Canon of the Future

    Get PDF

    Alternative Courses of Action Available to Persons Injured Under the Antitrust Laws

    Get PDF

    Robust Fuzzy Controllers Using FPGAs

    Get PDF
    Electro-mechanical device controllers typically come in one of three forms, proportional (P), Proportional Derivative (PD), and Proportional Integral Derivative (PID). Two methods of control are discussed in this paper; they are (1) the classical technique that requires an in-depth mathematical use of poles and zeros, and (2) the fuzzy logic (FL) technique that is similar to the way humans think and make decisions. FL controllers are used in multiple industries; examples include control engineering, computer vision, pattern recognition, statistics, and data analysis. Presented is a study on the development of a PD motor controller written in very high speed hardware description language (VHDL), and implemented in FL. Four distinct abstractions compose the FL controller, they are the fuzzifier, the rule-base, the fuzzy inference system (FIS), and the defuzzifier. FL is similar to, but different from, Boolean logic; where the output value may be equal to 0 or 1, but it could also be equal to any decimal value between them. This controller is unique because of its VHDL implementation, which uses integer mathematics. To compensate for VHDL's inability to synthesis floating point numbers, a scale factor equal to 10(sup (N/4) is utilized; where N is equal to data word size. The scaling factor shifts the decimal digits to the left of the decimal point for increased precision. PD controllers are ideal for use with servo motors, where position control is effective. This paper discusses control methods for motion-base platforms where a constant velocity equivalent to a spectral resolution of 0.25 cm(exp -1) is required; however, the control capability of this controller extends to various other platforms

    Ion trap transducers for quantum electromechanical oscillators

    Get PDF
    An enduring challenge for contemporary physics is to experimentally observe and control quantum behavior in macroscopic systems. We show that a single trapped atomic ion could be used to probe the quantum nature of a mesoscopic mechanical oscillator precooled to 4K, and furthermore, to cool the oscillator with high efficiency to its quantum ground state. The proposed experiment could be performed using currently available technology.Comment: 4 pages, 2 figure

    A heralded quantum gate between remote quantum memories

    Full text link
    We demonstrate a probabilistic entangling quantum gate between two distant trapped ytterbium ions. The gate is implemented between the hyperfine "clock" state atomic qubits and mediated by the interference of two emitted photons carrying frequency encoded qubits. Heralded by the coincidence detection of these two photons, the gate has an average fidelity of 90+-2%. This entangling gate together with single qubit operations is sufficient to generate large entangled cluster states for scalable quantum computing

    Preparing encoded states in an oscillator

    Get PDF
    Recently a scheme has been proposed for constructing quantum error-correcting codes that embed a finite-dimensional code space in the infinite-dimensional Hilbert space of a system described by continuous quantum variables. One of the difficult steps in this scheme is the preparation of the encoded states. We show how these states can be generated by coupling a continuous quantum variable to a single qubit. An ion trap quantum computer provides a natural setting for a continuous system coupled to a qubit. We discuss how encoded states may be generated in an ion trap.Comment: 5 pages, 4 figures, RevTe

    Unitary transformation approach for the trapped ion dynamics

    Get PDF
    We present a way of treating the problem of the interaction of a single trapped ion with laser beams based on successive aplications of unitary transformations onto the Hamiltonian. This allows the diagonalization of the Hamiltonian, by means of recursive relations, without performing the Lamb-Dicke approximation.Comment: 8 page
    corecore