1,743 research outputs found
The shape of the urine stream — from biophysics to diagnostics
We develop a new computational model of capillary-waves in free-jet flows, and apply this to the problem of urological diagnosis in this first ever study of the biophysics behind the characteristic shape of the urine stream as it exits the urethral meatus. The computational fluid dynamics model is used to determine the shape of a liquid jet issuing from a non-axisymmetric orifice as it deforms under the action of surface tension. The computational results are verified with experimental modelling of the urine stream. We find that the shape of the stream can be used as an indicator of both the flow rate and orifice geometry. We performed volunteer trials which showed these fundamental correlations are also observed in vivo for male healthy volunteers and patients undergoing treatment for low flow rate. For healthy volunteers, self estimation of the flow shape provided an accurate estimation of peak flow rate (+-2%). However for the patients, the relationship between shape and flow rate suggested poor meatal opening during voiding. The results show that self measurement of the shape of the urine stream can be a useful diagnostic tool for medical practitioners since it provides a non-invasive method of measuring urine flow rate and urethral dilation
Cross-correlation Weak Lensing of SDSS Galaxy Clusters III: Mass-to-light Ratios
We present measurements of the excess mass-to-light ratio measured
aroundMaxBCG galaxy clusters observed in the SDSS. This red sequence cluster
sample includes objects from small groups with masses ranging from ~5x10^{12}
to ~10^{15} M_{sun}/h. Using cross-correlation weak lensing, we measure the
excess mass density profile above the universal mean \Delta \rho(r) = \rho(r) -
\bar{\rho} for clusters in bins of richness and optical luminosity. We also
measure the excess luminosity density \Delta l(r) = l(r) - \bar{l} measured in
the z=0.25 i-band. For both mass and light, we de-project the profiles to
produce 3D mass and light profiles over scales from 25 kpc/ to 22 Mpc/h. From
these profiles we calculate the cumulative excess mass M(r) and excess light
L(r) as a function of separation from the BCG. On small scales, where \rho(r)
>> \bar{\rho}, the integrated mass-to-light profile may be interpreted as the
cluster mass-to-light ratio. We find the M/L_{200}, the mass-to-light ratio
within r_{200}, scales with cluster mass as a power law with index 0.33+/-0.02.
On large scales, where \rho(r) ~ \bar{\rho}, the M/L approaches an asymptotic
value independent of cluster richness. For small groups, the mean M/L_{200} is
much smaller than the asymptotic value, while for large clusters it is
consistent with the asymptotic value. This asymptotic value should be
proportional to the mean mass-to-light ratio of the universe . We find
/b^2_{ml} = 362+/-54 h (statistical). There is additional uncertainty in
the overall calibration at the ~10% level. The parameter b_{ml} is primarily a
function of the bias of the L <~ L_* galaxies used as light tracers, and should
be of order unity. Multiplying by the luminosity density in the same bandpass
we find \Omega_m/b^2_{ml} = 0.02+/-0.03, independent of the Hubble parameter.Comment: Third paper in a series; v2.0 incorporates ApJ referee's suggestion
Diagenetic Evolution and Porosity Destruction of Turbiditic Hybrid Arenites and Siliciclastic Sandstones of Foreland Basins: Evidence from the Eocene Hecho Group, Pyrenees, Spain
International audienceThis study aims to unravel the impact of diagenetic alterations on porosity loss of foreland-basin turbiditic hybrid arenites and associated siliciclastic sandstones of the Eocene Hecho Group (south-central Pyrenees, Spain). In this succession, hybrid arenites and calclithites are extensively cemented by mesogenetic calcite cement (delta18O VPDB = –10.0 per thousand to –5.8per thousand ; Th, mode = 80° C; salinity mode = 18.8 wt% eq. NaCl), Fe-dolomite (delta18O VPDB = –8.5 per thousand to –6.3 per thousand ) and trace amounts of siderite. The extent of carbonate cementation is interpreted to be related to the amounts of extrabasinal and intrabasinal carbonate grains, which provided nuclei and sources for the precipitation and growth of carbonate cements. Other diagenetic alterations, such as pyrite and albitization, had no impact on reservoir quality. Scarce early diagenetic cements, coupled with abundant ductile carbonate and siliciclastic framework grains, have led to rapid porosity loss owing to compaction. Conversely, abundant quartz in the sandstones prevented rapid loss of porosity by mechanical compaction. Reservoir quality was affected by mesogenetic cementation by quartz overgrowths, calcite and dolomite intergranular pressure dissolution of quartz grains, and formation of fracture-filling calcite cement (delta 18O V-PDB values from –10.4 per thousand to –7.8 per thousand ; Th temperatures of circa 150° C), which are attributed to deep circulation of hot meteoric waters during extensional stages of tectonism. The results of this study illustrate that diagenetic evolution pathways of the arenites and sandstones are closely linked to the variation in detrital composition, particularly the proportion and types of extrabasinal noncarbonates, extrabasinal carbonates, and intrabasinal carbonate grains. These insights suggest that marine turbiditic hybrid arenites and calclithites of foreland basins are subjected to more rapid and extensive porosity loss owing to compaction and cementation than associated siliciclastic sandstones. Degradation of reservoir quality makes these hybrid arenites, calclithites, and sandstones suitable as tight gas reservoirs, but only if fracture porosity and permeability develop during tectonic deformation
The Burkholderia Cenocepacia OmpA-Like Protein BCAL2958: Identification, Characterization, and Detection of Anti-BCAL2958 Antibodies in Serum from B. Cepacia Complex-Infected Cystic Fibrosis Patients
Respiratory infections by bacteria of the Burkholderia cepacia complex (Bcc) remain an important cause of morbidity and mortality among cystic fibrosis patients, highlighting the need for novel therapeutic strategies. In the present work we have studied the B. cenocepacia protein BCAL2958, a member of the OmpA-like family of proteins, demonstrated as highly immunogenic in other pathogens and capable of eliciting strong host immune responses. The encoding gene was cloned and the protein, produced as a 6× His-tagged derivative, was used to produce polyclonal antibodies. Bioinformatics analyses led to the identification of sequences encoding proteins with a similarity higher than 96 % to BCAL2958 in all the publicly available Bcc genomes. Furthermore, using the antibody it was experimentally demonstrated that this protein is produced by all the 12 analyzed strains from 7 Bcc species. In addition, results are also presented showing the presence of anti-BCAL2958 antibodies in sera from cystic fibrosis patients with a clinical record of respiratory infection by Bcc, and the ability of the purified protein to in vitro stimulate neutrophils. The widespread production of the protein by Bcc members, together with its ability to stimulate the immune system and the detection of circulating antibodies in patients with a documented record of Bcc infection strongly suggest that the protein is a potential candidate for usage in preventive therapies of infections by Bcc
Signal yields, energy resolution, and recombination fluctuations in liquid xenon
This work presents an analysis of monoenergetic electronic recoil peaks in
the dark-matter-search and calibration data from the first underground science
run of the Large Underground Xenon (LUX) detector. Liquid xenon charge and
light yields for electronic recoil energies between 5.2 and 661.7 keV are
measured, as well as the energy resolution for the LUX detector at those same
energies. Additionally, there is an interpretation of existing measurements and
descriptions of electron-ion recombination fluctuations in liquid xenon as
limiting cases of a more general liquid xenon re- combination fluctuation
model. Measurements of the standard deviation of these fluctuations at
monoenergetic electronic recoil peaks exhibit a linear dependence on the number
of ions for energy deposits up to 661.7 keV, consistent with previous LUX
measurements between 2-16 keV with H. We highlight similarities in liquid
xenon recombination for electronic and nuclear recoils with a comparison of
recombination fluctuations measured with low-energy calibration data.Comment: 11 pages, 12 figures, 3 table
Limited Effect of Dopaminergic Medication on Straight Walking and Turning in Early-to-Moderate Parkinson’s Disease during Single and Dual Tasking
Background: In Parkinson’s disease (PD), the effects of dopaminergic medication on straight walking and turning were mainly investigated under single tasking (ST) conditions. However, multitasking situations are considered more daily relevant.Methods: Thirty-nine early to moderate PD patients performed the following standarized ST and dual tasks (DT) as fast as possible for one minute during On- and Off-medication while wearing inertial sensors: straight walking and turning, checking boxes, and subtracting serial 7s. Quantitative gait parameters, as well as velocity of the secondary tasks were analyzed.Results: The following parameters improved significantly in On-medication during ST: gait velocity during straight walking (p=0.03); step duration (p=0.048) and peak velocity (p=0.04) during turning; velocity of checking boxes during ST (p=0.04) and DT (p=0.04). Velocity of checking boxes was the only parameter that also improved during DT.Conclusion: These results suggest that dopaminergic medication does not relevantly influence straight walking and turning in early to moderate PD during DT
- …
