34 research outputs found

    Hemispheric functional segregation facilitates target detection during sustained visuospatial attention

    Get PDF
    Visuospatial attention is strongly lateralized, with the right hemisphere commonly exhibiting stronger activation and connectivity patterns than the left hemisphere during attentive processes. However, whether such asymmetry influences inter-hemispheric information transfer and behavioral performance is not known. Here we used a region of interest (ROI) and network-based approach to determine steady-state fMRI functional connectivity (FC) in the whole cerebral cortex during a leftward/rightward covert visuospatial attention task. We found that the global FC topology between either ROIs or networks was independent on the attended side. The side of attention significantly modulated FC strength between brain networks, with leftward attention primarily involving the connections of the right visual network with dorsal and ventral attention networks in both the left and right hemisphere. High hemispheric functional segregation significantly correlated with faster target detection response times (i.e., better performance). Our findings suggest that the dominance of the right hemisphere in visuospatial attention is associated with an hemispheric functional segregation that is beneficial for behavioral performance

    Perception is associated with the brain's metabolic response to sensory stimulation

    Get PDF
    Processing of incoming sensory stimulation triggers an increase of cerebral perfusion and blood oxygenation (neurovascular response) as well as an alteration of the metabolic neurochemical profile (neurometabolic response). Here we show in human primary visual cortex (V1) that perceived and unperceived isoluminant chromatic flickering stimuli designed to have similar neurovascular responses as measured by blood oxygenation level dependent functional MRI (BOLD-fMRI) have markedly different neurometabolic responses as measured by functional MRS. In particular, a significant regional buildup of lactate, an index of aerobic glycolysis, and glutamate, an index of malate-aspartate shuttle, occurred in V1 only when the flickering was perceived, without any relation with behavioral or physiological variables. Whereas the BOLD-fMRI signal in V1, a proxy for input to V1, was insensitive to flickering perception by design, the BOLD-fMRI signal in secondary visual areas was larger during perceived than unperceived flickering, indicating increased output from V1. These results demonstrate that the upregulation of energy metabolism induced by visual stimulation depends on the type of information processing taking place in V1, and that 1H-fMRS provides unique information about local input/output balance that is not measured by BOLD fMRI

    Association between the G1001C polymorphism in the GRIN1 gene promoter region and schizophrenia

    No full text
    Background: The GRIN1 gene plays a fundamental role in many brain functions, and its involvement in the pathogenesis of the schizophrenia has been widely investigated. Non-synonymous polymorphisms have not been identified in the coding regions. To investigate the potential role of GRIN1 in the susceptibility to schizophrenia, we analyzed the G1001C polymorphism located in the promoter region in a case-control association study. Methods: The G1001C polymorphism allele distribution was analyzed in a sample of 139 Italian schizophrenic patients and 145 healthy control subjects by a polymerase chain reaction amplification followed by digestion with a restriction endonuclease. Results: We found that the C allele may alter a consensus sequence for the transcription factor NF-\u3baB and that its frequency was higher in patients than in control subjects (p = .0085). The genotype distribution also was different, with p = .034 (if C allele dominant, p = .0137, odds ratio 2.037, 95% confidence interval 1.1502-3.6076). Conclusions: The association reported in this study suggests that the GRIN1 gene is a good candidate for the susceptibility to schizophrenia

    Selective phosphorylation of nuclear CREB by fluoxetine is linked to activation of CaM kinase IV and MAP kinase cascades

    No full text
    Regulation of gene expression is purported as a major component in the long-term action of antidepressants. The transcription factor cAMP-response element-binding protein (CREB) is activated by chronic antidepressant treatments, although a number of studies reported different effects on CREB, depending on drug types used and brain areas investigated. Furthermore, little is known as to what signaling cascades are responsible for CREB activation, although cAMP-protein kinase A (PKA) cascade was suggested to be a central player. We investigated how different drugs (fluoxetine (FLX), desipramine (DMI), reboxetine (RBX)) affect CREB expression and phosphorylation of Ser(133) in the hippocampus and prefrontal/frontal cortex (PFCX). Acute treatments did not induce changes in these mechanisms. Chronic FLX increased nuclear phospho-CREB (pCREB) far more markedly than pronoradrenergic drugs, particularly in PFCX. We investigated the function of the main signaling cascades that were shown to phosphorylate and regulate CREB. PKA did not seem to account for the selective increase of pCREB induced by FLX. All drug treatments markedly increased the enzymatic activity of nuclear Ca2+/calmodulin (CaM) kinase IV (CaMKIV), a major neuronal CREB kinase, in PFCX. Activation of this kinase was due to increased phosphorylation of the activatory residue Thr196, with no major changes in the expression levels of alpha- and beta-CaM kinase kinase, enzymes that phosphorylate CaMKIV. Again in PFCX, FLX selectively increased the expression level of MAP kinases Erk1/2, without affecting their phosphorylation. Our results show that FLX exerts a more marked effect on CREB phosphorylation and suggest that CaMKIV and MAP kinase cascades are involved in this effect

    Reduced activation of intracellular signaling pathways in rat prefrontal cortex after chronic phencyclidine administration

    No full text
    Evidence exists that schizophrenia is characterized by deficits in cell-cell communication and information processing. In the present study, we used the phencyclidine (PCP) animal model of schizophrenia to investigate possible defects in intracellular signaling proteins involved in neuroplasticity. Western Blot analysis has been performed to determine total and phospho-protein levels of extracellular signal-regulated kinases 1/2 (ERK1/2), type II calcium/calmodulin-dependent protein kinase (alphaCaMKII) and cAMP-response element binding protein (CREB) in prefrontal cortex (PFC) and hippocampus (HIP) of rat chronically treated with PCP, whereas their mRNA levels were determined by real time RT-PCR. We found reduced levels of P-ERK1/2, P-alphaCaMKII and P-CREB in prefrontal cortex of PCP-treated animals when compared to controls, whereas no effects were observed on total protein or mRNA levels. Conversely, no significant changes were detected on protein levels or mRNA expression in hippocampus. Given the role of ERK1/2, alphaCaMKII and CREB in neuroplastic mechanisms and cell communication, our data suggest that their decreased activation following chronic PCP administration can contribute to cortical defects occurring in schizophrenia, and may therefore represent potential targets for pharmacological interventio
    corecore