868 research outputs found
Take it or leave it: prefrontal control in recreational cocaine users.
Though stimulant drugs such as cocaine are considered highly addictive, some individuals report recreational use over long periods without developing dependence. Difficulties in response inhibition have been hypothesized to contribute to dependence, but previous studies investigating response inhibition in recreational cocaine users have reported conflicting results. Performance on a stop-signal task was examined in 24 recreational cocaine users and 32 healthy non-drug using control participants matched for age, gender and verbal intelligence during functional magnetic resonance imaging scanning. The two groups were further matched on traumatic childhood histories and the absence of family histories of addiction. Results revealed that recreational cocaine users did not significantly differ from controls on any index of task performance, including response execution and stop-signal reaction time, with the latter averaging 198 ms in both groups. Functional magnetic resonance imaging analyses indicated that, compared with controls, stopping in the recreational users was associated with increased activation in the pre-supplementary motor area but not the right inferior frontal cortex. Thus, findings imply intact response inhibition abilities in recreational cocaine users, though the distinct pattern of accompanying activation suggests increased recruitment of brain areas implicated in response inhibition. This increased recruitment could be attributed to compensatory mechanisms that enable preserved cognitive control in this group, possibly relating to their hypothetical resilience to stimulant drug dependence. Such overactivation, alternatively, may be attributable to prolonged cocaine use leading to neuroplastic adaptations.This work was funded by a Medical Research Council (MRC) research grant to KDE, ETB and TWR (G0701497) and was conducted within the Behavioural and Clinical Neuroscience Institute, University of Cambridge, UK, which is supported by a joint award from the MRC and the Wellcome Trust; Both KDE and PSJ were supported by the MRC, SM was supported by a Wellcome Trust grant (089589/Z/09/Z) awarded to TW Robbins.This is the final version of the article. It first appeared from NPG via http://dx.doi.org/10.1038/tp.2015.8
Comparing the immune response to a novel intranasal nanoparticle PLGA vaccine and a commercial BPI3V vaccine in dairy calves
peer-reviewedBackground There is a need to improve vaccination against respiratory pathogens in calves by stimulation of local immunity at the site of pathogen entry at an early stage in life. Ideally such a vaccine preparation would not be inhibited by the maternally derived antibodies. Additionally, localized immune response at the site of infection is also crucial to control infection at the site of entry of virus. The present study investigated the response to an intranasal bovine parainfluenza 3 virus (BPI3V) antigen preparation encapsulated in PLGA (poly dl-lactic-co-glycolide) nanoparticles in the presence of pre-existing anti-BPI3V antibodies in young calves and comparing it to a commercially available BPI3V respiratory vaccine.
Results
There was a significant (P < 0.05) increase in BPI3V-specific IgA in the nasal mucus of the BPI3V nanoparticle vaccine group alone. Following administration of the nanoparticle vaccine an early immune response was induced that continued to grow until the end of study and was not observed in the other treatment groups. Virus specific serum IgG response to both the nanoparticle vaccine and commercial live attenuated vaccine showed a significant (P < 0.05) rise over the period of study. However, the cell mediated immune response observed didn’t show any significant rise in any of the treatment groups.
Conclusion
Calves administered the intranasal nanoparticle vaccine induced significantly greater mucosal IgA responses, compared to the other treatment groups. This suggests an enhanced, sustained mucosal-based immunological response to the BPI3V nanoparticle vaccine in the face of pre-existing antibodies to BPI3V, which are encouraging and potentially useful characteristics of a candidate vaccine. However, ability of nanoparticle vaccine in eliciting cell mediated immune response needs further investigation. More sustained local mucosal immunity induced by nanoparticle vaccine has obvious potential if it translates into enhanced protective immunity in the face of virus outbreak
Temporal reproduction and its neuroanatomical correlates in adults with attention deficit hyperactivity disorder and their unaffected first-degree relatives
Background:
Little is known about time perception, its putative role as cognitive endophenotype, and its neuroanatomical underpinnings in adults with attention deficit hyperactivity disorder (ADHD).
Method:
Twenty adults with ADHD, 20 unaffected first-degree relatives and 20 typically developing controls matched for age and gender undertook structural magnetic resonance imaging scans. Voxel-based morphometry with DARTEL was performed to obtain regional grey-matter volumes. Temporal processing was investigated as a putative cognitive endophenotype using a temporal reproduction paradigm. General linear modelling was employed to examine the relationship between temporal reproduction performances and grey-matter volumes.
Results:
ADHD participants were impaired in temporal reproduction and unaffected first-degree relatives performed in between their ADHD probands and typically developing controls. Increased grey-matter volume in the cerebellum was associated with poorer temporal reproduction performance.
Conclusions:
Adults with ADHD are impaired in time reproduction. Performances of the unaffected first-degree relatives are in between ADHD relatives and controls, suggesting that time reproduction might be a cognitive endophenotype for adult ADHD. The cerebellum is involved in time reproduction and might play a role in driving time performances
The effect of methylphenidate on three forms of response inhibition in boys with AD/HD
Item does not contain fulltextThe current study was aimed at (a) investigating the effect of three doses methylphenidate (MPH) and placebo on inhibition of a prepotent response, inhibition of an ongoing response, and interference control in Attention Deficit/Hyperactivity Disorder (AD/HD), and (b) studying dose-response relations for the three forms of response inhibition. To meet these aims, the following tasks were selected: two versions of the Stop Paradigm for inhibition of a prepotent response, a Circle Tracing Task and a recently developed Follow Task for inhibition of an ongoing response, and the Stroop Color-Word Test and an Eriksen Flanker Task for interference control. These tasks were administered to 23 boys with AD/HD during four treatment conditions: 5 mg MPH, 10 mg MPH, 20 mg MPH, and placebo. A pseudorandomized, multiple-blind, placebo-controlled, within-subject design was used. As hypothesized, inhibitory control in children with AD/HD improved under MPH compared to placebo. However, this effect was only significant for inhibition of a prepotent response and inhibition of an ongoing response (as measured by the Follow Task), but not for interference control. The relation between treatment condition and response was linear. However, this linear relation was due to improved inhibitory control under MPH compared to placebo, because no effects of MPH dose were observed for any of the response inhibition measures
Interaction of perceptual grouping and crossmodal temporal capture in tactile apparent-motion
Previous studies have shown that in tasks requiring participants to report the direction of apparent motion, task-irrelevant mono-beeps can "capture'' visual motion perception when the beeps occur temporally close to the visual stimuli. However, the contributions of the relative timing of multimodal events and the event structure, modulating uni- and/or crossmodal perceptual grouping, remain unclear. To examine this question and extend the investigation to the tactile modality, the current experiments presented tactile two-tap apparent-motion streams, with an SOA of 400 ms between successive, left-/right-hand middle-finger taps, accompanied by task-irrelevant, non-spatial auditory stimuli. The streams were shown for 90 seconds, and participants' task was to continuously report the perceived (left-or rightward) direction of tactile motion. In Experiment 1, each tactile stimulus was paired with an auditory beep, though odd-numbered taps were paired with an asynchronous beep, with audiotactile SOAs ranging from -75 ms to 75 ms. Perceived direction of tactile motion varied systematically with audiotactile SOA, indicative of a temporal-capture effect. In Experiment 2, two audiotactile SOAs-one short (75 ms), one long (325 ms)-were compared. The long-SOA condition preserved the crossmodal event structure (so the temporal-capture dynamics should have been similar to that in Experiment 1), but both beeps now occurred temporally close to the taps on one side (even-numbered taps). The two SOAs were found to produce opposite modulations of apparent motion, indicative of an influence of crossmodal grouping. In Experiment 3, only odd-numbered, but not even-numbered, taps were paired with auditory beeps. This abolished the temporal-capture effect and, instead, a dominant percept of apparent motion from the audiotactile side to the tactile-only side was observed independently of the SOA variation. These findings suggest that asymmetric crossmodal grouping leads to an attentional modulation of apparent motion, which inhibits crossmodal temporal-capture effects
Grouping by feature of cross-modal flankers in temporal ventriloquism
Signals in one sensory modality can influence perception of another, for example the bias of visual timing by audition: temporal ventriloquism. Strong accounts of temporal ventriloquism hold that the sensory representation of visual signal timing changes to that of the nearby sound. Alternatively, underlying sensory representations do not change. Rather, perceptual grouping processes based on spatial, temporal, and featural information produce best-estimates of global event properties. In support of this interpretation, when feature-based perceptual grouping conflicts with temporal information-based in scenarios that reveal temporal ventriloquism, the effect is abolished. However, previous demonstrations of this disruption used long-range visual apparent-motion stimuli. We investigated whether similar manipulations of feature grouping could also disrupt the classical temporal ventriloquism demonstration, which occurs over a short temporal range. We estimated the precision of participants’ reports of which of two visual bars occurred first. The bars were accompanied by different cross-modal signals that onset synchronously or asynchronously with each bar. Participants’ performance improved with asynchronous presentation relative to synchronous - temporal ventriloquism - however, unlike the long-range apparent motion paradigm, this was unaffected by different combinations of cross-modal feature, suggesting that featural similarity of cross-modal signals may not modulate cross-modal temporal influences in short time scales
Inhibition of thoughts and actions in obsessive-compulsive disorder: extending the endophenotype?
Original article can be found at: http://journals.cambridge.org/ Copyright © Cambridge University Press 2009 The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution-NonCommercial-ShareAlike licence <http://creativecommons.org/licenses/by-nc-sa/2.5/>.Background: Obsessive-compulsive disorder (OCD) has been associated with impairments in stop-signal inhibition, a measure of motor response suppression. The study used a novel paradigm to examine both thought suppression and response inhibition in OCD, where the modulatory effects of stimuli relevant to OCD could also be assessed. Additionally, the study compared inhibitory impairments in OCD patients with and without co-morbid depression, as depression is the major co-morbidity of OCD. Method: Volitional response suppression and unintentional thought suppression to emotive and neutral stimuli were examined using a novel thought stop-signal task. The thought stop-signal task was administered to non-depressed OCD patients, depressed OCD patients and healthy controls (n=20 per group). Results: Motor inhibition impairments were evident in OCD patients, while motor response performance did not differ between patients and controls. Switching to a new response but not motor inhibition was affected by stimulus relevance in OCD patients. Additionally, unintentional thought suppression as measured by repetition priming was intact. OCD patients with and without depression did not differ on any task performance measures, though there were significant differences in all self-reported measures. Conclusions: Results support motor inhibition deficits in OCD that remain stable regardless of stimulus meaning or co-morbid depression. Only switching to a new response was influenced by stimulus meaning. When response inhibition was successful in OCD patients, so was the unintentional suppression of the accompanying thought.Peer reviewe
Vaccine responses in newborns.
Immunisation of the newborn represents a key global strategy in overcoming morbidity and mortality due to infection in early life. Potential limitations, however, include poor immunogenicity, safety concerns and the development of tolerogenicity or hypo-responsiveness to either the same antigen and/or concomitant antigens administered at birth or in the subsequent months. Furthermore, the neonatal immunological milieu is polarised towards Th2-type immunity with dampening of Th1-type responses and impaired humoral immunity, resulting in qualitatively and quantitatively poorer antibody responses compared to older infants. Innate immunity also shows functional deficiency in antigen-presenting cells: the expression and signalling of Toll-like receptors undergo maturational changes associated with distinct functional responses. Nevertheless, the effectiveness of BCG, hepatitis B and oral polio vaccines, the only immunisations currently in use in the neonatal period, is proof of concept that vaccines can be successfully administered to the newborn via different routes of delivery to induce a range of protective mechanisms for three different diseases. In this review paper, we discuss the rationale for and challenges to neonatal immunisation, summarising progress made in the field, including lessons learnt from newborn vaccines in the pipeline. Furthermore, we explore important maternal, infant and environmental co-factors that may impede the success of current and future neonatal immunisation strategies. A variety of approaches have been proposed to overcome the inherent regulatory constraints of the newborn innate and adaptive immune system, including alternative routes of delivery, novel vaccine configurations, improved innate receptor agonists and optimised antigen-adjuvant combinations. Crucially, a dual strategy may be employed whereby immunisation at birth is used to prime the immune system in order to improve immunogenicity to subsequent homologous or heterologous boosters in later infancy. Similarly, potent non-specific immunomodulatory effects may be elicited when challenged with unrelated antigens, with the potential to reduce the overall risk of infection and allergic disease in early life
Divergent executive functioning in OCD
BACKGROUND: There is evidence of executive function impairment in obsessive compulsive disorder (OCD) that potentially contributes to symptom development and maintenance. Nevertheless, the precise nature of these executive impairments and their neural basis remains to be defined. METHOD: We compared stopping and shifting, two key executive functions previously implicated in OCD, in the same task using functional magnetic resonance imaging, in patients with virtually no co-morbidities and age-, verbal IQ- and gender-matched healthy volunteers. The combined task allowed direct comparison of neural activity in stopping and shifting independent of patient sample characteristics and state variables such as arousal, learning, or current symptom expression. RESULTS: Both OCD patients and controls exhibited right inferior frontal cortex activation during stopping, and left inferior parietal cortex activation during shifting. However, widespread under-activation across frontal-parietal areas was found in OCD patients compared to controls for shifting but not stopping. Conservative, whole-brain analyses also indicated marked divergent abnormal activation in OCD in the caudate and thalamus for these two cognitive functions, with stopping-related over-activation contrasting with shift-related under-activation. CONCLUSIONS: OCD is associated with selective components of executive function, which engage similar common elements of cortico-striatal regions in different abnormal ways. The results implicate altered neural activation of subcortical origin in executive function abnormalities in OCD that are dependent on the precise cognitive and contextual requirements, informing current theories of symptom expression.This research was funded by a Wellcome Trust grant (089589/Z/09/Z) awarded to TW Robbins, BJ Everitt, AC Roberts, JW Dalley and BJ Sahakian. Work was completed at the Behavioural and Clinical Neuroscience Institute which is supported by a joint award from the Medical Research Council and Wellcome Trust (G00001354).This is the final version of the article. It first appeared from Cambridge University Press via http://dx.doi.org/10.1017/S003329171500233
- …
