762 research outputs found

    Properties of Type II Plateau Supernova SNLS-04D2dc: Multicolor Light Curves of Shock Breakout and Plateau

    Full text link
    Shock breakout is the brightest radiative phenomenon in a Type II supernova (SN). Although it was predicted to be bright, the direct observation is difficult due to the short duration and X-ray/ultraviolet-peaked spectra. First entire observations of the shock breakouts of Type II Plateau SNe (SNe IIP) were reported in 2008 by ultraviolet and optical observations by the {\it GALEX} satellite and supernova legacy survey (SNLS), named SNLS-04D2dc and SNLS-06D1jd. We present multicolor light curves of a SN IIP, including the shock breakout and plateau, calculated with a multigroup radiation hydrodynamical code {\sc STELLA} and an evolutionary progenitor model. The synthetic multicolor light curves reproduce well the observations of SNLS-04D2dc. This is the first study to reproduce the ultraviolet light curve of the shock breakout and the optical light curve of the plateau consistently. We conclude that SNLS-04D2dc is the explosion with a canonical explosion energy 1.2×10511.2\times10^{51} ergs and that its progenitor is a star with a zero-age main-sequence mass 20M20M_\odot and a presupernova radius 800R800R_\odot. The model demonstrates that the peak apparent BB-band magnitude of the shock breakout would be mB26.4m_{\rm B}\sim26.4 mag if a SN being identical to SNLS-04D2dc occurs at a redshift z=1z=1, which can be reached by 8m-class telescopes. The result evidences that the shock breakout has a great potential to detect SNe IIP at z\gsim1.Comment: 5 pages, 5 figures. Accepted for publication in the Astrophysical Journal Letter

    Discovery of a Gravitationally Lensed Quasar from the Sloan Digital Sky Survey: SDSS J133222.62+034739.9

    Get PDF
    We report the discovery of the two-image gravitationally lensed quasar SDSS J133222.62+034739.9 (SDSS J1332+0347) with an image separation of Delta_theta=1.14". This system consists of a source quasar at z_s=1.445 and a lens galaxy at z_l=0.191. The agreement of the luminosity, ellipticity and position angle of the lens galaxy with those expected from lens model confirms the lensing hypothesis.Comment: 16 pages, 4 figures, the Astronomical Journal accepte

    Large Polarization Degree of Comet 2P/Encke Continuum Based on Spectropolarimetric Signals During Its 2017 Apparition

    Full text link
    Spectropolarimetry is a powerful technique for investigating the physical properties of gas and solid materials in cometary comae without mutual contamination, but there have been few spectropolarimetric studies to extract each component. We attempt to derive the continuum polarization degree of comet 2P/Encke, free from influence of molecular emissions. The target is unique in that it has an orbit dynamically decoupled from Jupiter like main-belt asteroids, while ejecting gas and dust like ordinary comets. We observed the comet using the Higashi-Hiroshima Optical and Near-Infrared Camera attached to the Cassegrain focus of the 150-cm Kanata telescope on UT 2017 February 21 when the comet was at the solar phase angle of 75.7 deg. We find that the continuum polarization degree with respect to the scattering plane is 33.8+/-2.7 % at the effective wavelength of 0.815 um, which is significantly higher than those of cometary dust in a high-Pmax group at similar phase angles. Assuming that an ensemble polarimetric response of 2P/Encke's dust as a function of phase angle is morphologically similar with those of other comets, its maximum polarization degree is estimated to > 40 % at the phase angle of ~100 deg. In addition, we obtain the polarization degrees of the C2 swan bands (0.51-0.56 um), the NH2 alpha bands (0.62-0.69 um) and the CN-red system (0.78-0.94 um) in a range of 3-19 %, which depend on the molecular species and rotational quantum numbers of each branch. The polarization vector aligns nearly perpendicularly to the scattering plane with the average of 0.4 deg over a wavelength range of 0.50-0.97 um. From the observational evidence, we conjecture that the large polarization degree of 2P/Encke would be attributable to a dominance of large dust particles around the nucleus, which have remained after frequent perihelion passages near the Sun.Comment: 9 pages, 4 figures, accepted for publication in Astronomy & Astrophysic

    Subaru Hyper Suprime-Cam Survey for An Optical Counterpart of GW170817

    Get PDF
    We perform a zz-band survey for an optical counterpart of a binary neutron star coalescence GW170817 with Subaru/Hyper Suprime-Cam. Our untargeted transient search covers 23.623.6 deg2^2 corresponding to the 56.6%56.6\% credible region of GW170817 and reaches the 50%50\% completeness magnitude of 20.620.6 mag on average. As a result, we find 60 candidates of extragalactic transients, including J-GEM17btc (a.k.a. SSS17a/DLT17ck). While J-GEM17btc is associated with NGC 4993 that is firmly located inside the 3D skymap of GW170817, the other 59 candidates do not have distance information in the GLADE v2 catalog or NASA/IPAC Extragalactic Database (NED). Among 59 candidates, 58 are located at the center of extended objects in the Pan-STARRS1 catalog, while one candidate has an offset. We present location, zz-band apparent magnitude, and time variability of the candidates and evaluate the probabilities that they are located inside of the 3D skymap of GW170817. The probability for J-GEM17btc is 64%64\% being much higher than those for the other 59 candidates (9.3×1032.1×101%9.3\times10^{-3}-2.1\times10^{-1}\%). Furthermore, the possibility, that at least one of the other 59 candidates is located within the 3D skymap, is only 3.2%3.2\%. Therefore, we conclude that J-GEM17btc is the most-likely and distinguished candidate as the optical counterpart of GW170817.Comment: 14 pages, 9 figures. Accepted for publication in PASJ (Publications of the Astronomical Society of Japan

    The Hubble Space Telescope Cluster Supernova Survey: VI. The Volumetric Type Ia Supernova Rate

    Full text link
    We present a measurement of the volumetric Type Ia supernova (SN Ia) rate out to z ~ 1.6 from the Hubble Space Telescope Cluster Supernova Survey. In observations spanning 189 orbits with the Advanced Camera for Surveys we discovered 29 SNe, of which approximately 20 are SNe Ia. Twelve of these SNe Ia are located in the foregrounds and backgrounds of the clusters targeted in the survey. Using these new data, we derive the volumetric SN Ia rate in four broad redshift bins, finding results consistent with previous measurements at z > 1 and strengthening the case for a SN Ia rate that is equal to or greater than ~0.6 x 10^-4/yr/Mpc^3 at z ~ 1 and flattening out at higher redshift. We provide SN candidates and efficiency calculations in a form that makes it easy to rebin and combine these results with other measurements for increased statistics. Finally, we compare the assumptions about host-galaxy dust extinction used in different high-redshift rate measurements, finding that different assumptions may induce significant systematic differences between measurements.Comment: 11 pages, 7 figures. Submitted to the Astrophysical Journal. Revised version following referee comments. See the HST Cluster SN Survey website at http://supernova.lbl.gov/2009ClusterSurvey for control time simulations in a machine-readable table and a complete listing of transient candidates from the surve

    Large Area Survey for z=7 Galaxies in SDF and GOODS-N: Implications for Galaxy Formation and Cosmic Reionization

    Full text link
    We present results of our large-area survey for z'-band dropout galaxies at z=7 in a 1568 arcmin^2 sky area covering the SDF and GOODS-N fields. Combining our ultra-deep Subaru/Suprime-Cam z'- and y-band (lambda_eff=1um) images with legacy data of Subaru and HST, we have identified 22 bright z-dropout galaxies down to y=26, one of which has a spectroscopic redshift of z=6.96 determined from Lya emission. The z=7 luminosity function (LF) yields the best-fit Schechter parameters of phi*=0.69 +2.62/-0.55 x10^(-3) Mpc^(-3), Muv*=-20.10 +/-0.76 mag, and alpha=-1.72 +/-0.65, and indicates a decrease from z=6 at a >95% confidence level. This decrease is beyond the cosmic variance in our two fields, which is estimated to be a factor of <~2. We have found that the cosmic star formation rate density drops from the peak at z=2-3 to z=7 roughly by a factor of ~10 but not larger than ~100. A comparison with the reionization models suggests either that the Universe could not be totally ionized by only galaxies at z=7, or more likely that properties of galaxies at z=7 are different from those at low redshifts having, e.g., a larger escape fraction (>~0.2), and/or a flatter IMF. Our SDF z-dropout galaxies appear to form 60-Mpc long filamentary structures, and the z=6.96 galaxy with Lya emission is located at the center of an overdense region consisting of four UV bright dropout candidates, which might suggest an existence of a well-developed ionized bubble at z=7.Comment: 20 pages; ApJ in press, measurements improved with HST/WFC3 data point

    A New Determination of the High Redshift Type Ia Supernova Rates with the Hubble Space Telescope Advanced Camera for Surveys

    Get PDF
    We present a new measurement of the volumetric rate of Type Ia supernova up to a redshift of 1.7, using the Hubble Space Telescope (HST) GOODS data combined with an additional HST dataset covering the North GOODS field collected in 2004. We employ a novel technique that does not require spectroscopic data for identifying Type Ia supernovae (although spectroscopic measurements of redshifts are used for over half the sample); instead we employ a Bayesian approach using only photometric data to calculate the probability that an object is a Type Ia supernova. This Bayesian technique can easily be modified to incorporate improved priors on supernova properties, and it is well-suited for future high-statistics supernovae searches in which spectroscopic follow up of all candidates will be impractical. Here, the method is validated on both ground- and space-based supernova data having some spectroscopic follow up. We combine our volumetric rate measurements with low redshift supernova data, and fit to a number of possible models for the evolution of the Type Ia supernova rate as a function of redshift. The data do not distinguish between a flat rate at redshift > 0.5 and a previously proposed model, in which the Type Ia rate peaks at redshift >1 due to a significant delay from star-formation to the supernova explosion. Except for the highest redshifts, where the signal to noise ratio is generally too low to apply this technique, this approach yields smaller or comparable uncertainties than previous work.Comment: Accepted for publication in Ap

    Derivation of the Supermolecular Interaction Energy from the Monomer Densities in the Density Functional Theory

    Get PDF
    The density functional theory (DFT) interaction energy of a dimer is rigorously derived from the monomer densities. To this end, the supermolecular energy bifunctional is formulated in terms of mutually orthogonal sets of orbitals of the constituent monomers. The orthogonality condition is preserved in the solution of the Kohn-Sham equations through the Pauli blockade method. Numerical implementation of the method provides interaction energies which agree with those obtained from standard supermolecular calculations within less than 0.1% error for three example functionals: Slater-Dirac, PBE0 and B3LYP, and for two model van der Waals dimers: Ne2 and (C2H4)2, and two model H-bond complexes: (HF)2 and (NH3)2.Comment: 6 pages, 1 figure, REVTeX
    corecore