5,880 research outputs found
Quantum Circuit Placement
We study the problem of the practical realization of an abstract quantum
circuit when executed on quantum hardware. By practical, we mean adapting the
circuit to particulars of the physical environment which restricts/complicates
the establishment of certain direct interactions between qubits. This is a
quantum version of the classical circuit placement problem. We study the
theoretical aspects of the problem and also present empirical results that
match the best known solutions that have been developed by experimentalists.
Finally, we discuss the efficiency of the approach and scalability of its
implementation with regards to the future development of quantum hardware.Comment: 15 pages, 4 figures. Improved theory and software implementation, new
experimental result
Interface bonding of a ferromagnetic/semiconductor junction : a photoemission study of Fe/ZnSe(001)
We have probed the interface of a ferromagnetic/semiconductor (FM/SC)
heterojunction by a combined high resolution photoemission spectroscopy and
x-ray photoelectron diffraction study. Fe/ZnSe(001) is considered as an example
of a very low reactivity interface system and it expected to constitute large
Tunnel Magnetoresistance devices. We focus on the interface atomic environment,
on the microscopic processes of the interface formation and on the iron
valence-band. We show that the Fe contact with ZnSe induces a chemical
conversion of the ZnSe outermost atomic layers. The main driving force that
induces this rearrangement is the requirement for a stable Fe-Se bonding at the
interface and a Se monolayer that floats at the Fe growth front. The released
Zn atoms are incorporated in substitution in the Fe lattice position. This
formation process is independent of the ZnSe surface termination (Zn or Se).
The Fe valence-band evolution indicates that the d-states at the Fermi level
show up even at submonolayer Fe coverage but that the Fe bulk character is only
recovered above 10 monolayers. Indeed, the Fe 1-band states,
theoretically predicted to dominate the tunneling conductance of Fe/ZnSe/Fe
junctions, are strongly modified at the FM/SC interface.Comment: 23 pages, 5 figures, submitted to Physical review
Approximating Fractional Time Quantum Evolution
An algorithm is presented for approximating arbitrary powers of a black box
unitary operation, , where is a real number, and
is a black box implementing an unknown unitary. The complexity of
this algorithm is calculated in terms of the number of calls to the black box,
the errors in the approximation, and a certain `gap' parameter. For general
and large , one should apply a total of times followed by our procedure for approximating the fractional
power . An example is also given where for
large integers this method is more efficient than direct application of
copies of . Further applications and related algorithms are also
discussed.Comment: 13 pages, 2 figure
Quantum state restoration and single-copy tomography
Given a single copy of an n qubit quantum state |psi>, the no-cloning theorem
greatly limits the amount of information which can be extracted from it.
Moreover, given only a procedure which verifies the state, for example a
procedure which measures the operator |psi> in
time polynomial in n . In this paper, we consider the scenario in which we are
given both a single copy of |psi> and the ability to verify it. We show that in
this setting, we can do several novel things efficiently. We present a new
algorithm that we call quantum state restoration which allows us to extend a
large subsystem of |psi> to the full state, and in turn this allows us to copy
small subsystems of |psi>. In addition, we present algorithms that can perform
tomography on small subsystems of |psi>, and we show how to use these
algorithms to estimate the statistics of any efficiently implementable POVM
acting on |psi> in time polynomial in the number of outcomes of the POVM.Comment: edited for clarity; 13 pages, 1 figur
Bifidobacteria and lactobacilli in the gut microbiome of children with non-alcoholic fatty liver disease: which strains act as health players?
Introduction: Non-alcoholic fatty liver disease (NAFLD), considered the leading cause of chronic liver disease in children, can often progress from non-alcoholic fatty liver (NAFL) to non-alcoholic steatohepatitis (NASH). It is clear that obesity is one of the main risk factors involved in NAFLD pathogenesis, even if specific mechanisms have yet to be elucidated. We investigated the distribution of intestinal bifidobacteria and lactobacilli in the stools of four groups of children: obese, obese with NAFL, obese with NASH, and healthy, age-matched controls (CTRLs). Material and methods: Sixty-one obese, NAFL and NASH children and 54 CTRLs were enrolled in the study. Anthropometric and metabolic parameters were measured for all subjects. All children with suspected NASH underwent liver biopsy. Bifidobacteria and lactobacilli were analysed in children’s faecal samples, during a broader, 16S rRNA-based pyrosequencing analysis of the gut microbiome. Results: Three Bifidobacterium spp. (Bifidobacterium longum, Bifidobacterium bifidum, and Bifidobacterium adolescentis) and five Lactobacillus spp. (L. zeae, L. vaginalis, L. brevis, L. ruminis, and L. mucosae) frequently recurred in metagenomic analyses. Lactobacillus spp. increased in NAFL, NASH, or obese children compared to CTRLs. Particularly, L. mucosae was significantly higher in obese (p = 0.02426), NAFLD (p = 0.01313) and NASH (p = 0.01079) than in CTRLs. In contrast, Bifidobacterium spp. were more abundant in CTRLs, suggesting a protective and beneficial role of these microorganisms against the aforementioned diseases. Conclusions: Bifidobacteria seem to have a protective role against the development of NAFLD and obesity, highlighting their possible use in developing novel, targeted and effective probiotics
Adiabatic Quantum Computing with Phase Modulated Laser Pulses
Implementation of quantum logical gates for multilevel system is demonstrated
through decoherence control under the quantum adiabatic method using simple
phase modulated laser pulses. We make use of selective population inversion and
Hamiltonian evolution with time to achieve such goals robustly instead of the
standard unitary transformation language.Comment: 19 pages, 6 figures, submitted to JOP
On the robustness of bucket brigade quantum RAM
We study the robustness of the bucket brigade quantum random access memory
model introduced by Giovannetti, Lloyd, and Maccone [Phys. Rev. Lett. 100,
160501 (2008)]. Due to a result of Regev and Schiff [ICALP '08 pp. 773], we
show that for a class of error models the error rate per gate in the bucket
brigade quantum memory has to be of order (where is the
size of the memory) whenever the memory is used as an oracle for the quantum
searching problem. We conjecture that this is the case for any realistic error
model that will be encountered in practice, and that for algorithms with
super-polynomially many oracle queries the error rate must be
super-polynomially small, which further motivates the need for quantum error
correction. By contrast, for algorithms such as matrix inversion [Phys. Rev.
Lett. 103, 150502 (2009)] or quantum machine learning [Phys. Rev. Lett. 113,
130503 (2014)] that only require a polynomial number of queries, the error rate
only needs to be polynomially small and quantum error correction may not be
required. We introduce a circuit model for the quantum bucket brigade
architecture and argue that quantum error correction for the circuit causes the
quantum bucket brigade architecture to lose its primary advantage of a small
number of "active" gates, since all components have to be actively error
corrected.Comment: Replaced with the published version. 13 pages, 9 figure
Statistical Assertions for Validating Patterns and Finding Bugs in Quantum Programs
In support of the growing interest in quantum computing experimentation,
programmers need new tools to write quantum algorithms as program code.
Compared to debugging classical programs, debugging quantum programs is
difficult because programmers have limited ability to probe the internal states
of quantum programs; those states are difficult to interpret even when
observations exist; and programmers do not yet have guidelines for what to
check for when building quantum programs. In this work, we present quantum
program assertions based on statistical tests on classical observations. These
allow programmers to decide if a quantum program state matches its expected
value in one of classical, superposition, or entangled types of states. We
extend an existing quantum programming language with the ability to specify
quantum assertions, which our tool then checks in a quantum program simulator.
We use these assertions to debug three benchmark quantum programs in factoring,
search, and chemistry. We share what types of bugs are possible, and lay out a
strategy for using quantum programming patterns to place assertions and prevent
bugs.Comment: In The 46th Annual International Symposium on Computer Architecture
(ISCA '19). arXiv admin note: text overlap with arXiv:1811.0544
Improved Error-Scaling for Adiabatic Quantum State Transfer
We present a technique that dramatically improves the accuracy of adiabatic
state transfer for a broad class of realistic Hamiltonians. For some systems,
the total error scaling can be quadratically reduced at a fixed maximum
transfer rate. These improvements rely only on the judicious choice of the
total evolution time. Our technique is error-robust, and hence applicable to
existing experiments utilizing adiabatic passage. We give two examples as
proofs-of-principle, showing quadratic error reductions for an adiabatic search
algorithm and a tunable two-qubit quantum logic gate.Comment: 10 Pages, 4 figures. Comments are welcome. Version substantially
revised to generalize results to cases where several derivatives of the
Hamiltonian are zero on the boundar
- …
