2,549 research outputs found
Pump-Probe Experiments on the Single-Molecule Magnet Fe8 : Measurement of Excited Level Lifetimes
We present magnetization measurements on the single molecule magnet Fe8 in
the presence of pulsed microwave radiation. A pump-probe technique is used with
two microwave pulses with frequencies of 107 GHz and 118 GHz and pulse lengths
of several nanoseconds to study the spin dynamics via time-resolved
magnetization measurements using a Hall probe magnetometer. We find evidence
for short spin-phonon relaxation times of the order of one microsecond. The
temperature dependence of the spin-phonon relaxation time in our experiments is
in good agreement with previously published theoretical results. We also
established the presence of very short energy diffusion times, that act on a
timescale of about 70 ns.Comment: submitted to Phys. Rev. Lett. (01 March 2007
Probing the core structure and evolution of red giants using gravity-dominated mixed modes observed with Kepler
We report for the first time a parametric fit to the pattern of the \ell = 1
mixed modes in red giants, which is a powerful tool to identify
gravity-dominated mixed modes. With these modes, which share the
characteristics of pressure and gravity modes, we are able to probe directly
the helium core and the surrounding shell where hydrogen is burning. We propose
two ways for describing the so-called mode bumping that affects the frequencies
of the mixed modes. Firstly, a phenomenological approach is used to describe
the main features of the mode bumping. Alternatively, a quasi-asymptotic
mixed-mode relation provides a powerful link between seismic observations and
the stellar interior structure. We used period \'echelle diagrams to emphasize
the detection of the gravity-dominated mixed modes. The asymptotic relation for
mixed modes is confirmed. It allows us to measure the gravity-mode period
spacings in more than two hundred red giant stars. The identification of the
gravity-dominated mixed modes allows us to complete the identification of all
major peaks in a red giant oscillation spectrum, with significant consequences
for the true identification of \ell = 3 modes, of \ell = 2 mixed modes, for the
mode widths and amplitudes, and for the \ell = 1 rotational splittings. The
accurate measurement of the gravity-mode period spacing provides an effective
probe of the inner, g-mode cavity. The derived value of the coupling
coefficient between the cavities is different for red giant branch and clump
stars. This provides a probe of the hydrogen-shell burning region that
surrounds the helium core. Core contraction as red giants ascend the red giant
branch can be explored using the variation of the gravity-mode spacing as a
function of the mean large separation.Comment: Accepted in A&
Asteroseismic surface gravity for evolved stars
Context: Asteroseismic surface gravity values can be of importance in
determining spectroscopic stellar parameters. The independent log(g) value from
asteroseismology can be used as a fixed value in the spectroscopic analysis to
reduce uncertainties due to the fact that log(g) and effective temperature can
not be determined independently from spectra. Since 2012, a combined analysis
of seismically and spectroscopically derived stellar properties is ongoing for
a large survey with SDSS/APOGEE and Kepler. Therefore, knowledge of any
potential biases and uncertainties in asteroseismic log(g) values is now
becoming important. Aims: The seismic parameter needed to derive log(g) is the
frequency of maximum oscillation power (nu_max). Here, we investigate the
influence of nu_max derived with different methods on the derived log(g)
values. The large frequency separation between modes of the same degree and
consecutive radial orders (Dnu) is often used as an additional constraint for
the determination of log(g). Additionally, we checked the influence of small
corrections applied to Dnu on the derived values of log(g). Methods We use
methods extensively described in the literature to determine nu_max and Dnu
together with seismic scaling relations and grid-based modeling to derive
log(g). Results: We find that different approaches to derive oscillation
parameters give results for log(g) with small, but different, biases for
red-clump and red-giant-branch stars. These biases are well within the quoted
uncertainties of ~0.01 dex (cgs). Corrections suggested in the literature to
the Dnu scaling relation have no significant effect on log(g). However somewhat
unexpectedly, method specific solar reference values induce biases of the order
of the uncertainties, which is not the case when canonical solar reference
values are used.Comment: 8 pages, 5 figures, accepted for publication by A&
Period spacings in red giants I. Disentangling rotation and revealing core structure discontinuities
Asteroseismology allows us to probe the physical conditions inside the core
of red giant stars. This relies on the properties of the global oscillations
with a mixed character that are highly sensitive to the physical properties of
the core. However, overlapping rotational splittings and mixed-mode spacings
result in complex structures in the mixed-mode pattern, which severely
complicates its identification and the measurement of the asymptotic period
spacing. This work aims at disentangling the rotational splittings from the
mixed-mode spacings, in order to open the way to a fully automated analysis of
large data sets. An analytical development of the mixed-mode asymptotic
expansion is used to derive the period spacing between two consecutive mixed
modes. The \'echelle diagrams constructed with the appropriately stretched
periods are used to exhibit the structure of the gravity modes and of the
rotational splittings. We propose a new view on the mixed-mode oscillation
pattern based on corrected periods, called stretched periods, that mimic the
evenly spaced gravity-mode pattern. This provides a direct understanding of all
oscillation components, even in the case of rapid rotation. The measurement of
the asymptotic period spacing and the signature of the structural glitches on
mixed modes are then made easy. This work opens the possibility to derive all
seismic global parameters in an automated way, including the identification of
the different rotational multiplets and the measurement of the rotational
splitting, even when this splitting is significantly larger than the period
spacing. Revealing buoyancy glitches provides a detailed view on the radiative
core.Comment: Accepted in A&
An international survey of stress tests
In the summer of 2000, central banks from the Group of Ten countries surveyed large international banks about their use of stress tests_a risk management tool that measures a firm's exposure to extreme movements in asset prices. The survey findings highlight the risks that most concern financial institutions and clarify how these institutions use stress tests in their overall risk management programs.Risk management ; Risk assessment ; Financial services industry
Seismic evidence for a weak radial differential rotation in intermediate-mass core helium burning stars
The detection of mixed modes that are split by rotation in Kepler red giants
has made it possible to probe the internal rotation profiles of these stars,
which brings new constraints on the transport of angular momentum in stars.
Mosser et al. (2012) have measured the rotation rates in the central regions of
intermediate-mass core helium burning stars (secondary clump stars). Our aim
was to exploit& the rotational splittings of mixed modes to estimate the amount
of radial differential rotation in the interior of secondary clump stars using
Kepler data, in order to place constraints on angular momentum transport in
intermediate-mass stars. We selected a subsample of Kepler secondary clump
stars with mixed modes that are clearly rotationally split. By applying a
thorough statistical analysis, we showed that the splittings of both
gravity-dominated modes (trapped in central regions) and p-dominated modes
(trapped in the envelope) can be measured. We then used these splittings to
estimate the amount of differential rotation by using inversion techniques and
by applying a simplified approach based on asymptotic theory (Goupil et al.
2013). We obtained evidence for a weak radial differential rotation for six of
the seven targets that were selected, with the central regions rotating
to times faster than the envelope. The last target was
found to be consistent with a solid-body rotation. This demonstrates that an
efficient redistribution of angular momentum occurs after the end of the main
sequence in the interior of intermediate-mass stars, either during the
short-lived subgiant phase, or once He-burning has started in the core. In
either case, this should bring constraints on the angular momentum transport
mechanisms that are at work.Comment: 16 pages, 8 figures, accepted in A&
Magnetization dynamics in the single-molecule magnet Fe8 under pulsed microwave irradiation
We present measurements on the single molecule magnet Fe8 in the presence of
pulsed microwave radiation at 118 GHz. The spin dynamics is studied via time
resolved magnetization experiments using a Hall probe magnetometer. We
investigate the relaxation behavior of magnetization after the microwave pulse.
The analysis of the experimental data is performed in terms of different
contributions to the magnetization after-pulse relaxation. We find that the
phonon bottleneck with a characteristic relaxation time of 10 to 100 ms
strongly affects the magnetization dynamics. In addition, the spatial effect of
spin diffusion is evidenced by using samples of different sizes and different
ways of the sample's irradiation with microwaves.Comment: 14 pages, 12 figure
Seismic and spectroscopic characterization of the solar-like pulsating CoRoT target HD 49385
The star HD 49385 is the first G-type solar-like pulsator observed in the
seismology field of the space telescope CoRoT. The satellite collected 137 days
of high-precision photometric data on this star, confirming that it presents
solar-like oscillations. HD 49385 was also observed in spectroscopy with the
NARVAL spectrograph in January 2009. Our goal is to characterize HD 49385 using
both spectroscopic and seismic data. The fundamental stellar parameters of HD
49385 are derived with the semi-automatic software VWA, and the projected
rotational velocity is estimated by fitting synthetic profiles to isolated
lines in the observed spectrum. A maximum likelihood estimation is used to
determine the parameters of the observed p modes. We perform a global fit, in
which modes are fitted simultaneously over nine radial orders, with degrees
ranging from l=0 to l=3 (36 individual modes). Precise estimates of the
atmospheric parameters (Teff, [M/H], log g) and of the vsini of HD 49385 are
obtained. The seismic analysis of the star leads to a clear identification of
the modes for degrees l=0,1,2. Around the maximum of the signal (nu=1013
microHz), some peaks are found significant and compatible with the expected
characteristics of l=3 modes. Our fit yields robust estimates of the
frequencies, linewidths and amplitudes of the modes. We find amplitudes of
about 5.6 +/- 0.8 ppm for radial modes at the maximum of the signal. The
lifetimes of the modes range from one day (at high frequency) to a bit more
than two days (at low frequency). Significant peaks are found outside the
identified ridges and are fitted. They are attributed to mixed modes.Comment: 13 pages, 14 figures, accepted in A&
Angular momentum redistribution by mixed modes in evolved low-mass stars. II. Spin-down of the core of red giants induced by mixed modes
The detection of mixed modes in subgiants and red giants by the CoRoT and
\emph{Kepler} space-borne missions allows us to investigate the internal
structure of evolved low-mass stars. In particular, the measurement of the mean
core rotation rate as a function of the evolution places stringent constraints
on the physical mechanisms responsible for the angular momentum redistribution
in stars. It showed that the current stellar evolution codes including the
modelling of rotation fail to reproduce the observations. An additional
physical process that efficiently extracts angular momentum from the core is
thus necessary.
Our aim is to assess the ability of mixed modes to do this. To this end, we
developed a formalism that provides a modelling of the wave fluxes in both the
mean angular momentum and the mean energy equations in a companion paper. In
this article, mode amplitudes are modelled based on recent asteroseismic
observations, and a quantitative estimate of the angular momentum transfer is
obtained. This is performed for a benchmark model of 1.3 at three
evolutionary stages, representative of the evolved pulsating stars observed by
CoRoT and Kepler.
We show that mixed modes extract angular momentum from the innermost regions
of subgiants and red giants. However, this transport of angular momentum from
the core is unlikely to counterbalance the effect of the core contraction in
subgiants and early red giants. In contrast, for more evolved red giants, mixed
modes are found efficient enough to balance and exceed the effect of the core
contraction, in particular in the hydrogen-burning shell. Our results thus
indicate that mixed modes are a promising candidate to explain the observed
spin-down of the core of evolved red giants, but that an other mechanism is to
be invoked for subgiants and early red giants.Comment: Accepted in A&A, 7 pages, 8 figure
- …
