236 research outputs found

    TonEBP/NFAT5 promotes obesity and insulin resistance by epigenetic suppression of white adipose tissue beiging

    Get PDF
    Tonicity-responsive enhancer binding protein (TonEBP or NFAT5) is a regulator of cellular adaptation to hypertonicity, macrophage activation and T-cell development. Here we report that TonEBP is an epigenetic regulator of thermogenesis and obesity. In mouse subcutaneous adipocytes, TonEBP expression increases > 50-fold in response to high-fat diet (HFD) feeding. Mice with TonEBP haplo-deficiency or adipocyte-specific TonEBP deficiency are resistant to HFD-induced obesity and metabolic defects (hyperglycemia, hyperlipidemia, and hyperinsulinemia). They also display increased oxygen consumption, resistance to hypothermia, and beiging of subcutaneous fat tissues. TonEBP suppresses the promoter of beta 3-adrenoreceptor gene, a critical regulator of lipolysis and thermogenesis, in ex vivo and cultured adipocytes. This involves recruitment of DNMT1 DNA methylase and methylation of the promoter. In human subcutaneous adipocytes TonEBP expression displays a correlation with body mass index but an inverse correlation with beta 3-adrenoreceptor expression. Thus, TonEBP is an attractive therapeutic target for obesity, insulin resistance, and hyperlipidemia

    Anthropometric Variables Accurately Predict Dual Energy X-Ray Absorptiometric-Derived Body Composition and Can Be Used to Screen for Diabetes

    Get PDF
    The current world-wide epidemic of obesity has stimulated interest in developing simple screening methods to identify individuals with undiagnosed diabetes mellitus type 2 (DM2) or metabolic syndrome (MS). Prior work utilizing body composition obtained by sophisticated technology has shown that the ratio of abdominal fat to total fat is a good predictor for DM2 or MS. The goals of this study were to determine how well simple anthropometric variables predict the fat mass distribution as determined by dual energy x-ray absorptometry (DXA), and whether these are useful to screen for DM2 or MS within a population. To accomplish this, the body composition of 341 females spanning a wide range of body mass indices and with a 23% prevalence of DM2 and MS was determined using DXA. Stepwise linear regression models incorporating age, weight, height, waistline, and hipline predicted DXA body composition (i.e., fat mass, trunk fat, fat free mass, and total mass) with good accuracy. Using body composition as independent variables, nominal logistic regression was then performed to estimate the probability of DM2. The results show good discrimination with the receiver operating characteristic (ROC) having an area under the curve (AUC) of 0.78. The anthropometrically-derived body composition equations derived from the full DXA study group were then applied to a group of 1153 female patients selected from a general endocrinology practice. Similar to the smaller study group, the ROC from logistical regression using body composition had an AUC of 0.81 for the detection of DM2. These results are superior to screening based on questionnaires and compare favorably with published data derived from invasive testing, e.g., hemoglobin A1c. This anthropometric approach offers promise for the development of simple, inexpensive, non-invasive screening to identify individuals with metabolic dysfunction within large populations

    Associations of Amylin with Inflammatory Markers and Metabolic Syndrome in Apparently Healthy Chinese

    Get PDF
    BACKGROUND: Cellular and animal studies implicate multiple roles of amylin in regulating insulin action, glucose and lipid metabolisms. However, the role of amylin in obesity related metabolic disorders has not been thoroughly investigated in humans. Therefore, we aimed to evaluate the distribution of circulating amylin and its association with metabolic syndrome (MetS) and explore if this association is influenced by obesity, inflammatory markers or insulin resistance in apparently healthy Chinese. METHODS: A population-based sample of 1,011 Chinese men and women aged 35-54 years was employed to measure plasma amylin, inflammatory markers (C-reactive protein [CRP] and interleukin-6 [IL-6]), insulin, glucose and lipid profiles. MetS was defined according to the updated National Cholesterol Education Program Adult Treatment Panel III criteria for Asian-Americans. RESULTS: Plasma amylin concentrations were higher in overweight/obese participants than normal-weight counterparts (P<0.001) without sex difference. Circulating amylin was positively associated with CRP, IL-6, BMI, waist circumference, blood pressure, fasting glucose, insulin, amylin/insulin ratio, HOMA-IR, LDL cholesterol and triglycerides, while negatively associated with HDL cholesterol (all P<0.001). After multiple adjustments, the risk of MetS was significantly higher (odds ratio 3.71; 95% confidence interval: 2.53 to 5.46) comparing the highest with the lowest amylin quartile. The association remained significant even further controlling for BMI, inflammatory markers, insulin or HOMA-IR. CONCLUSIONS: Our study suggests that amylin is strongly associated with inflammatory markers and MetS. The amylin-MetS association is independent of established risk factors of MetS, including obesity, inflammatory markers and insulin resistance. The causal role of hyperamylinemia in the development of MetS needs to be confirmed prospectively

    Association of metabolic syndrome and its components with arterial stiffness in Caucasian subjects of the MARK study: a cross-sectional trial

    Full text link
    BACKGROUND: The cardio-ankle vascular index (CAVI) and brachial-ankle pulse wave velocity (baPWV) can reflect both central and peripheral arterial stiffness. Metabolic syndrome (MetS) and its components may increase arterial stiffness and the risk of cardiovascular diseases. However, the correlation of MetS and its components with arterial stiffness is still not clear. The primary aim of this study is thus the relationship using baPWV and CAVI in Caucasian adults with intermediate cardiovascular risk. The secondary aim is to analyze sex differences. METHODS: This study analyzed 2351 subjects aged 35–74 years (mean, 61.4 ± 7.7 years) comprising 61.7 % males and enrolled in the improving interMediAte Risk management (MARK) study. CAVI was measured using a VaSera VS-1500 (®) device, and baPWV was calculated using a validated equation. MetS was defined based on the Joint Scientific Statement National Cholesterol Education Program III. Waist circumference, blood pressure, fasting plasma glucose, and lipid profile were measured. RESULTS: MetS was found in 51.9 % of the subjects. All MetS components except reduced HDL-cholesterol (p = 0.578) were associated with CAVI. High density lipoprotein cholesterol (p = 0.075) and waist circumference (p = 0.315) were associated with baPWV. The different MetS components that assess dyslipidemia using the stiffness measures show different associations according to patient sex. The high blood pressure component had a greater odds ratio (OR) for both baPWV ≥ 17.5 m/sec (OR = 6.90, 95 % CI 3.52–13.519) and CAVI ≥ 9 (OR = 2.20, 95 % CI 1.63–1.90). CONCLUSIONS: MetS and all its components (except HDL-cholesterol with baPWV and CAVI and WC with baPWV) were associated with baPWV and CAVI. However, there were sex differences in the association of MetS and its components with baPWV and CAVI. Data from this study suggest a greater association of CAVI and baPWV values with MetS components in males than in females and indicate greater arterial stiffness in the event of simultaneously elevated blood pressure, fasting plasma glucose, and waist circumference. Trial Registration Clinical Trials.gov Identifier: https://clinicaltrials.gov/ct2/show/ NCT01428934. Registered 2 September 2011. Last updated September 8, 2016 ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12933-016-0465-7) contains supplementary material, which is available to authorized users

    Metabolic syndrome: definitions and controversies

    Get PDF
    Metabolic syndrome (MetS) is a complex disorder defined by a cluster of interconnected factors that increase the risk of cardiovascular atherosclerotic diseases and diabetes mellitus type 2. Currently, several different definitions of MetS exist, causing substantial confusion as to whether they identify the same individuals or represent a surrogate of risk factors. Recently, a number of other factors besides those traditionally used to define MetS that are also linked to the syndrome have been identified. In this review, we critically consider existing definitions and evolving information, and conclude that there is still a need to develop uniform criteria to define MetS, so as to enable comparisons between different studies and to better identify patients at risk. As the application of the MetS model has not been fully validated in children and adolescents as yet, and because of its alarmingly increasing prevalence in this population, we suggest that diagnosis, prevention and treatment in this age group should better focus on established risk factors rather than the diagnosis of MetS

    Understanding the somatic consequences of depression: biological mechanisms and the role of depression symptom profile

    Full text link
    corecore