309 research outputs found
Observation of correlated spin-orbit order in a strongly anisotropic quantum wire system
Quantum wires with spin-orbit coupling provide a unique opportunity to
simultaneously control the coupling strength and the screened Coulomb
interactions where new exotic phases of matter can be explored. Here we report
on the observation of an exotic spin-orbit density wave in Pb-atomic wires on
Si(557) surfaces by mapping out the evolution of the modulated spin-texture at
various conditions with spin- and angle-resolved photoelectron spectroscopy.
The results are independently quantified by surface transport measurements. The
spin polarization, coherence length, spin dephasing rate, and the associated
quasiparticle gap decrease simultaneously as the screened Coulomb interaction
decreases with increasing excess coverage, providing a new mechanism for
generating and manipulating a spin-orbit entanglement effect via electronic
interaction. Despite clear evidence of spontaneous spin-rotation symmetry
breaking and modulation of spin-momentum structure as a function of excess
coverage, the average spin-polarization over the Brillouin zone vanishes,
indicating that time-reversal symmetry is intact as theoretically predicted
Local modularity measure for network clusterizations
Many complex networks have an underlying modular structure, i.e., structural
subunits (communities or clusters) characterized by highly interconnected
nodes. The modularity has been introduced as a measure to assess the
quality of clusterizations. has a global view, while in many real-world
networks clusters are linked mainly \emph{locally} among each other
(\emph{local cluster-connectivity}). Here, we introduce a new measure,
localized modularity , which reflects local cluster structure. Optimization
of and on the clusterization of two biological networks shows that the
localized modularity identifies more cohesive clusters, yielding a
complementary view of higher granularity.Comment: 5 pages, 4 figures, RevTex4; Changed conten
Response of the topological surface state to surface disorder in TlBiSe
Through a combination of experimental techniques we show that the topmost
layer of the topo- logical insulator TlBiSe as prepared by cleavage is
formed by irregularly shaped Tl islands at cryogenic temperatures and by mobile
Tl atoms at room temperature. No trivial surface states are observed in
photoemission at low temperatures, which suggests that these islands can not be
re- garded as a clear surface termination. The topological surface state is,
however, clearly resolved in photoemission experiments. This is interpreted as
a direct evidence of its topological self-protection and shows the robust
nature of the Dirac cone like surface state. Our results can also help explain
the apparent mass acquisition in S-doped TlBiSe.Comment: 16 pages, 5 figure
Universal response of the type-II Weyl semimetals phase diagram
The discovery of Weyl semimetals represents a significant advance in
topological band theory. They paradigmatically enlarged the classification of
topological materials to gapless systems while simultaneously providing
experimental evidence for the long-sought Weyl fermions. Beyond fundamental
relevance, their high mobility, strong magnetoresistance, and the possible
existence of even more exotic effects, such as the chiral anomaly, make Weyl
semimetals a promising platform to develop radically new technology. Fully
exploiting their potential requires going beyond the mere identification of
materials and calls for a detailed characterization of their functional
response, which is severely complicated by the coexistence of surface- and
bulk-derived topologically protected quasiparticles, i.e., Fermi arcs and Weyl
points, respectively. Here, we focus on the type-II Weyl semimetal class where
we find a stoichiometry-dependent phase transition from a trivial to a
non-trivial regime. By exploring the two extreme cases of the phase diagram, we
demonstrate the existence of a universal response of both surface and bulk
states to perturbations. We show that quasi-particle interference patterns
originate from scattering events among surface arcs. Analysis reveals that
topologically non-trivial contributions are strongly suppressed by spin
texture. We also show that scattering at localized impurities generate
defect-induced quasiparticles sitting close to the Weyl point energy. These
give rise to strong peaks in the local density of states, which lift the Weyl
node significantly altering the pristine low-energy Weyl spectrum. Visualizing
the microscopic response to scattering has important consequences for
understanding the unusual transport properties of this class of materials.
Overall, our observations provide a unifying picture of the Weyl phase diagram
Direct observation of the spin texture in strongly correlated SmB6 as evidence of the topological Kondo insulator
The concept of a topological Kondo insulator (TKI) has been brought forward
as a new class of topological insulators in which non-trivial surface states
reside in the bulk Kondo band gap at low temperature due to the strong
spin-orbit coupling [1-3]. In contrast to other three-dimensional (3D)
topological insulators (e.g. Bi2Se3), a TKI is truly insulating in the bulk
[4]. Furthermore, strong electron correlations are present in the system, which
may interact with the novel topological phase. Applying spin- and
angle-resolved photoemission spectroscopy (SARPES) to the Kondo insulator SmB6,
a promising TKI candidate, we reveal that the surface states of SmB6 are spin
polarized, and the spin is locked to the crystal momentum. Counter-propagating
states (i.e. at k and -k) have opposite spin polarizations protected by
time-reversal symmetry. Together with the odd number of Fermi surfaces of
surface states between the 4 time-reversal invariant momenta in the surface
Brillouin zone [5], these findings prove, for the first time, that SmB6 can
host non-trivial topological surface states in a full insulating gap in the
bulk stemming from the Kondo effect. Hence our experimental results establish
that SmB6 is the first realization of a 3D TKI. It can also serve as an ideal
platform for the systematic study of the interplay between novel topological
quantum states with emergent effects and competing order induced by strongly
correlated electrons.Comment: 4 figure
Prospective Assessment of Sex-Related Differences in Symptom Status and Health Perception Among Patients With Atrial Fibrillation.
We prospectively assessed sex-specific differences in health perception, overall symptom status, and specific symptoms in a large cohort of patients with atrial fibrillation.
We performed a prospective multicenter observational cohort study of 1553 patients with atrial fibrillation. Patients completed questionnaires about personal characteristics, comorbidities, and symptoms on a yearly basis. Mean age was 70±11 years among women and 67±12 years among men. Health perception on a visual analogue scale ranging from 0 to 100 (with higher scores indicating better health perception) was significantly lower in women than in men (70 [interquartile range: 50-80] versus 75 [interquartile range: 60-85]; javax.xml.bind.JAXBElement@29592a5d <0.0001). More women than men had any symptoms (85.0% versus 68.3%; javax.xml.bind.JAXBElement@7ac0b4e4 <0.0001), palpitations (65.2% versus 44.4%; javax.xml.bind.JAXBElement@41229466 <0.0001), dizziness (25.6% versus 13.5%; javax.xml.bind.JAXBElement@61871784 <0.0001), dyspnea (35.7% versus 21.8%; javax.xml.bind.JAXBElement@16cc22b <0.0001), and fatigue (25.3% versus 19.1%; javax.xml.bind.JAXBElement@7ef43176 =0.006). At 1-year follow-up, symptoms decreased in both sexes but remained more frequent in women (49.1% versus 32.6%, javax.xml.bind.JAXBElement@2b200b6a <0.0001). In multivariable adjusted longitudinal regression models, female sex remained an independent predictor for lower health perception (ß=-4.8; 95% CI, -6.5 to -3.1; javax.xml.bind.JAXBElement@72c212bd <0.0001), any symptoms (odds ratio [OR]: 2.6; 95% CI, 2.1-3.4; javax.xml.bind.JAXBElement@15d8fb54 <0.0001), palpitations (OR: 2.6; 95% CI, 2.1-3.2; javax.xml.bind.JAXBElement@4af80718 <0.0001), dizziness (OR: 2.9; 95% CI, 2.1-3.9; javax.xml.bind.JAXBElement@61282e76 <0.0001), dyspnea (OR: 2.1; 95% CI, 1.6-2.8; javax.xml.bind.JAXBElement@31d9f14 <0.0001), fatigue (OR: 1.6; 95% CI, 1.2-2.2; javax.xml.bind.JAXBElement@51cdd678 =0.0008), and chest pain (OR: 1.8; 95% CI, 1.3-2.6; javax.xml.bind.JAXBElement@5b87db9e =0.001).
Women with atrial fibrillation have a substantially higher symptom burden and lower health perception than men. These relationships persisted after multivariable adjustment and during prospective follow-up
Correlates of preschool children's objectively measured physical activity and sedentary behavior: a cross-sectional analysis of the SPLASHY study.
Identifying ways to promote physical activity and decrease sedentary time during childhood is a key public health issue. Research on the putative influences on preschool children's physical activity (PA) and sedentary behavior (SB) is limited and has yielded inconsistent results. Our aim was to identify correlates of PA and SB in preschool children.
Cross-sectional data were drawn from the Swiss Preschoolers' Health Study (SPLASHY), a Swiss population-based cohort study. Of 476 two to six year old children, 394 (54% boys) had valid PA data assessed by accelerometry. Information on exposure data was directly measured or extracted from parental questionnaires. Multilevel linear regression modeling was used to separately assess associations between 35 potential correlates and total PA (TPA), moderate-to-vigorous PA (MVPA) and SB.
In total, 12 correlates from different domains were identified. TPA and MVPA were greater in boys than girls, increased with age and were positively associated with gross motor skills. Children from single parent families had a higher level of TPA and spent less time sedentary than those living with two parents. Time spent outdoors was positively associated with TPA and negatively with SB. The child's activity temperament was related all three outcomes, whereas parental sports club membership, living area per person and neighborhood safety were associated with SB only. Fixed and random factors in the final models accounted for 28%, 32% and 22% of the total variance in TPA, MVPA and SB, respectively. Variance decomposition revealed that age, sex and activity temperament were the most influential correlates of both, TPA and MVPA, whereas the child's activity temperament, time outdoors and neighborhood safety were identified as the most important correlates of SB.
A multidimensional set of correlates of young children's activity behavior has been identified. Personal factors had the greatest influence on PA, whereas environmental-level factors had the greatest influence on SB. Moreover, we identified a number of previously unreported, potentially modifiable correlates of young children's PA and SB. These factors could serve to define target groups or become valuable targets for change in future interventions.
Current Controlled Trials ISRCTN41045021 (date of registration: 21.03.14)
Selective probing of hidden spin-polarized states in inversion-symmetric bulk
Spin- and angle-resolved photoemission spectroscopy is used to reveal that a large spin polarization is observable in the bulk centrosymmetric transition metal dichalcogenide MoS2. It is found that the measured spin polarization can be reversed by changing the handedness of incident circularly polarized light. Calculations based on a three-step model of photoemission show that the valley and layer-locked spin- polarized electronic states can be selectively addressed by circularly polarized light, therefore providing a novel route to probe these hidden spin-polarized states in inversion-symmetric systems as predicted by Zhang et al. [Nat. Phys. 10, 387 (2014).]
Epithelial calcineurin controls microbiota-dependent intestinal tumor development.
Inflammation-associated pathways are active in intestinal epithelial cells (IECs) and contribute to the pathogenesis of colorectal cancer (CRC). Calcineurin, a phosphatase required for the activation of the nuclear factor of activated T cells (NFAT) family of transcription factors, shows increased expression in CRC. We therefore investigated the role of calcineurin in intestinal tumor development. We demonstrate that calcineurin and NFAT factors are constitutively expressed by primary IECs and selectively activated in intestinal tumors as a result of impaired stratification of the tumor-associated microbiota and toll-like receptor signaling. Epithelial calcineurin supports the survival and proliferation of cancer stem cells in an NFAT-dependent manner and promotes the development of intestinal tumors in mice. Moreover, somatic mutations that have been identified in human CRC are associated with constitutive activation of calcineurin, whereas nuclear translocation of NFAT is associated with increased death from CRC. These findings highlight an epithelial cell-intrinsic pathway that integrates signals derived from the commensal microbiota to promote intestinal tumor development.This work was supported by the Deutsche Forschungsgemeinschaft (DFG) grants ZE814/5-1 (S.Z.), BA2863/5-1 (J.F.B.) and CH279/5-1 (T.C.), the European Research Council (ERC) starting grant 336528 (S.Z.), a Postdoctoral Fellowship Award from the Crohn's and Colitis Foundation of America (S.Z.), the European Commission (Marie Curie International Reintegration grant 256363; S.Z.), the DFG Excellence Cluster 'Inflammation at Interfaces' (S.Z. and J.F.B.), the DFG Excellence Cluster 'Center for Regenerative Therapies' (S.Z.); the US National Institutes of Health grants DK044319 (R.S.B.), DK051362 (R.S.B.), DK053056 (R.S.B.) and DK088199 (R.S.B.), the Harvard Digestive Diseases Center (HDDC) grant DK0034854 (R.S.B.), and the AIRC grant IG-14233 (M.E.B.).This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nm.407
- …
