426 research outputs found
Performance of the EUDET-type beam telescopes
Test beam measurements at the test beam facilities of DESY have been
conducted to characterise the performance of the EUDET-type beam telescopes
originally developed within the EUDET project. The beam telescopes are equipped
with six sensor planes using MIMOSA26 monolithic active pixel devices. A
programmable Trigger Logic Unit provides trigger logic and time stamp
information on particle passage. Both data acquisition framework and offline
reconstruction software packages are available. User devices are easily
integrable into the data acquisition framework via predefined interfaces.
The biased residual distribution is studied as a function of the beam energy,
plane spacing and sensor threshold. Its standard deviation at the two centre
pixel planes using all six planes for tracking in a 6\,GeV
electron/positron-beam is measured to be
(2.88\,\pm\,0.08)\,\upmu\meter.Iterative track fits using the formalism of
General Broken Lines are performed to estimate the intrinsic resolution of the
individual pixel planes. The mean intrinsic resolution over the six sensors
used is found to be (3.24\,\pm\,0.09)\,\upmu\meter.With a 5\,GeV
electron/positron beam, the track resolution halfway between the two inner
pixel planes using an equidistant plane spacing of 20\,mm is estimated to
(1.83\,\pm\,0.03)\,\upmu\meter assuming the measured intrinsic resolution.
Towards lower beam energies the track resolution deteriorates due to increasing
multiple scattering. Threshold studies show an optimal working point of the
MIMOSA26 sensors at a sensor threshold of between five and six times their RMS
noise. Measurements at different plane spacings are used to calibrate the
amount of multiple scattering in the material traversed and allow for
corrections to the predicted angular scattering for electron beams
Structure-function analysis reveals that the Pseudomonas aeruginosa Tps4 two-partner secretion system is involved in CupB5 translocation
Pseudomonas aeruginosa is a Gram-negative opportunistic bacterium, synonymous with cystic fibrosis patients, which can cause chronic infection of the lungs. This pathogen is a model organism to study biofilms: a bacterial population embedded in an extracellular matrix that provide protection from environmental pressures and lead to persistence. A number of Chaperone-Usher Pathways, namely CupA-CupE, play key roles in these processes by assembling adhesive pili on the bacterial surface. One of these, encoded by the cupB operon, is unique as it contains a nonchaperone-usher gene product, CupB5. Two-partner secretion (TPS) systems are comprised of a C-terminal integral membrane β-barrel pore with tandem N-terminal POTRA (POlypeptide TRansport Associated) domains located in the periplasm (TpsB) and a secreted substrate (TpsA). Using NMR we show that TpsB4 (LepB) interacts with CupB5 and its predicted cognate partner TpsA4 (LepA), an extracellular protease. Moreover, using cellular studies we confirm that TpsB4 can translocate CupB5 across the P. aeruginosa outer membrane, which contrasts a previous observation that suggested the CupB3 P-usher secretes CupB5. In support of our findings we also demonstrate that tps4/cupB operons are coregulated by the RocS1 sensor suggesting P. aeruginosa has developed synergy between these systems. Furthermore, we have determined the solution-structure of the TpsB4-POTRA1 domain and together with restraints from NMR chemical shift mapping and in vivo mutational analysis we have calculated models for the entire TpsB4 periplasmic region in complex with both TpsA4 and CupB5 secretion motifs. The data highlight specific residues for TpsA4/CupB5 recognition by TpsB4 in the periplasm and suggest distinct roles for each POTRA domain
Design and Test of a Forward Neutron Calorimeter for the ZEUS Experiment
A lead scintillator sandwich sampling calorimeter has been installed in the
HERA tunnel 105.6 m from the central ZEUS detector in the proton beam
direction. It is designed to measure the energy and scattering angle of
neutrons produced in charge exchange ep collisions. Before installation the
calorimeter was tested and calibrated in the H6 beam at CERN where 120 GeV
electrons, muons, pions and protons were made incident on the calorimeter. In
addition, the spectrum of fast neutrons from charge exchange proton-lucite
collisions was measured. The design and construction of the calorimeter is
described, and the results of the CERN test reported. Special attention is paid
to the measurement of shower position, shower width, and the separation of
electromagnetic showers from hadronic showers. The overall energy scale as
determined from the energy spectrum of charge exchange neutrons is compared to
that obtained from direct beam hadrons.Comment: 45 pages, 22 Encapsulated Postscript figures, submitted to Nuclear
Instruments and Method
Infrastructure for Detector Research and Development towards the International Linear Collider
The EUDET-project was launched to create an infrastructure for developing and
testing new and advanced detector technologies to be used at a future linear
collider. The aim was to make possible experimentation and analysis of data for
institutes, which otherwise could not be realized due to lack of resources. The
infrastructure comprised an analysis and software network, and instrumentation
infrastructures for tracking detectors as well as for calorimetry.Comment: 54 pages, 48 picture
Do we need a basis bolus concept for sedoanalgesia of mechanically ventilated patients in ICU?
Continuous hemodiafiltration with bicarbonate- and lactate-buffered replacement fluids in septic shock
Test beam performance measurements for the Phase I upgrade of the CMS pixel detector
A new pixel detector for the CMS experiment was built in order to cope with the instantaneous luminosities anticipated for the Phase I Upgrade of the LHC. The new CMS pixel detector provides four-hit tracking with a reduced material budget as well as new cooling and powering schemes. A new front-end readout chip mitigates buffering and bandwidth limitations, and allows operation at low comparator thresholds. In this paper, comprehensive test beam studies are presented, which have been conducted to verify the design and to quantify the performance of the new detector assemblies in terms of tracking efficiency and spatial resolution. Under optimal conditions, the tracking efficiency is (99.95 ± 0.05) %, while the intrinsic spatial resolutions are (4.80 ± 0.25) μm and (7.99 ± 0.21) μm along the 100 μm and 150 μm pixel pitch, respectively. The findings are compared to a detailed Monte Carlo simulation of the pixel detector and good agreement is found.Peer reviewe
Social prescriptions for advancing resilience in kids (SPARK): study protocol for a randomized controlled trial
BACKGROUND: Child mental health needs are rising in Canada, with over half a million young people requiring access to mental health care. Social determinants, including poverty and limited social support, contribute significantly to these difficulties. Social prescribing (SP), a non-medical intervention connecting individuals to community resources, is gaining traction in child and youth wellbeing research, though empirical evidence remains limited. OBJECTIVES: The overarching goal of the Social Prescriptions for Advancing Resilience in Kids (SPARK) study is to establish the preliminary feasibility of implementing social prescribing for children and youth on an outpatient MH waitlist. The study objectives are to determine feasibility and evaluate effectiveness. METHODS: This study will recruit 170 children and youth between the ages of 11 and 17 on the waitlist for outpatient mental health support at the Children's Hospital of Eastern Ontario (CHEO) in Ottawa, Ontario, Canada. Participants will be randomly assigned to either the intervention group or educational control group. Youth in the intervention group will receive a social prescription connecting them to community-based activities of their choice, while those in the control group will receive an educational booklet on social connections. Caregivers will also be invited to take part in the study. Children, youth, and their caregivers in the control group will complete online questionnaires at baseline and again 12 weeks later, while those in the intervention group will complete them at baseline and 12 weeks after beginning the social prescribing activities. The questionnaires will address demographic information, youths' symptoms of anxiety and depression, overall wellbeing, emotional and behavioural difficulties, social connectedness, and protective factors. Additionally, children and youth, caregivers, and staff (i.e., clinicians, medical practitioners) will participate in qualitative interviews about their experiences with SP. DISCUSSION: The findings from this study will add important knowledge about the impact of social prescribing as an approach to support the wellbeing of children and youth experiencing mental health challenges. In addition, this study will offer valuable insights into the barriers encountered and the strategies used to facilitate effective implementation of child and youth social prescribing. TRIAL REGISTRATION: The study was registered with ClinicalTrials.gov on June 6, 2025 (NCT07022561)
Resolution of inflammation: a new therapeutic frontier
Dysregulated inflammation is a central pathological process in diverse disease states. Traditionally, therapeutic approaches have sought to modulate the pro- or anti-inflammatory limbs of inflammation, with mixed success. However, insight into the pathways by which inflammation is resolved has highlighted novel opportunities to pharmacologically manipulate these processes — a strategy that might represent a complementary (and perhaps even superior) therapeutic approach. This Review discusses the state of the art in the biology of resolution of inflammation, highlighting the opportunities and challenges for translational research in this field
Trapping in irradiated p-on-n silicon sensors at fluences anticipated at the HL-LHC outer tracker
The degradation of signal in silicon sensors is studied under conditions expected at the CERN High-Luminosity LHC. 200 m thick n-type silicon sensors are irradiated with protons of different energies to fluences of up to neq/cm. Pulsed red laser light with a wavelength of 672 nm is used to generate electron-hole pairs in the sensors. The induced signals are used to determine the charge collection efficiencies separately for electrons and holes drifting through the sensor. The effective trapping rates are extracted by comparing the results to simulation. The electric field is simulated using Synopsys device simulation assuming two effective defects. The generation and drift of charge carriers are simulated in an independent simulation based on PixelAV. The effective trapping rates are determined from the measured charge collection efficiencies and the simulated and measured time-resolved current pulses are compared. The effective trapping rates determined for both electrons and holes are about 50% smaller than those obtained using standard extrapolations of studies at low fluences and suggests an improved tracker performance over initial expectations
- …
