42 research outputs found
Long-term manure exposure increases soil bacterial community potential for plasmid uptake.
This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record.Microbial communities derived from soils subject to different agronomic treatments were challenged with three broad host range plasmids, RP4, pIPO2tet and pRO101, via solid surface filter matings to assess their permissiveness. Approximately 1 in 10 000 soil bacterial cells could receive and maintain the plasmids. The community permissiveness increased up to 100% in communities derived from manured soil. While the plasmid transfer frequency was significantly influenced by both the type of plasmid and the agronomic treatment, the diversity of the transconjugal pools was purely plasmid dependent and was dominated by β- and γ-Proteobacteria
Broad host range plasmids can invade an unexpectedly diverse fraction of a soil bacterial community
Conjugal plasmids can provide microbes with full complements of new genes and constitute potent vehicles for horizontal gene transfer. Conjugal plasmid transfer is deemed responsible for the rapid spread of antibiotic resistance among microbes. While broad host range plasmids are known to transfer to diverse hosts in pure culture, the extent of their ability to transfer in the complex bacterial communities present in most habitats has not been comprehensively studied. Here, we isolated and characterized transconjugants with a degree of sensitivity not previously realized to investigate the transfer range of IncP- and IncPromA-type broad host range plasmids from three proteobacterial donors to a soil bacterial community. We identified transfer to many different recipients belonging to 11 different bacterial phyla. The prevalence of transconjugants belonging to diverse Gram-positive Firmicutes and Actinobacteria suggests that inter-Gram plasmid transfer of IncP-1 and IncPromA-type plasmids is a frequent phenomenon. While the plasmid receiving fractions of the community were both plasmid- and donor- dependent, we identified a core super-permissive fraction that could take up different plasmids from diverse donor strains. This fraction, comprising 80% of the identified transconjugants, thus has the potential to dominate IncP- and IncPromA-type plasmid transfer in soil. Our results demonstrate that these broad host range plasmids have a hitherto unrecognized potential to transfer readily to very diverse bacteria and can, therefore, directly connect large proportions of the soil bacterial gene pool. This finding reinforces the evolutionary and medical significances of these plasmids.Fil: Klumper, Uli. Technical University of Denmark; DinamarcaFil: Riber, Leise. Universidad de Copenhagen; DinamarcaFil: Dechesne, Arnaud. Technical University of Denmark; DinamarcaFil: Sannazzaro, Analía Inés. Universidad de Copenhagen; DinamarcaFil: Hansen, Lars H.. Universidad de Copenhagen; Dinamarca. Aarhus University. Roskilde; DinamarcaFil: Sørensen, Søren. Universidad de Copenhagen; DinamarcaFil: Smets, Barth F. Technical University of Denmark; Dinamarc
Metal stressors consistently modulate bacterial conjugal plasmid uptake potential in a phylogenetically conserved manner.
Published onlineJOURNAL ARTICLEThe environmental stimulants and inhibitors of conjugal plasmid transfer in microbial communities are poorly understood. Specifically, it is not known whether exposure to stressors may cause a community to alter its plasmid uptake ability. We assessed whether metals (Cu, Cd, Ni, Zn) and one metalloid (As), at concentrations causing partial growth inhibition, modulate community permissiveness (that is, uptake ability) against a broad-host-range IncP-type plasmid (pKJK5). Cells were extracted from an agricultural soil as recipient community and a cultivation-minimal filter mating assay was conducted with an exogenous E. coli donor strain. The donor hosted a gfp-tagged pKJK5 derivative from which conjugation events could be microscopically quantified and transconjugants isolated and phylogenetically described at high resolution via FACS and 16S rRNA amplicon sequencing. Metal stress consistently decreased plasmid transfer frequencies to the community, while the transconjugal pool richness remained unaffected with OTUs belonging to 12 bacterial phyla. The taxonomic composition of the transconjugal pools was distinct from their respective recipient communities and clustered dependent on the stress type and dose. However, for certain OTUs, stress increased or decreased permissiveness by more than 1000-fold and this response was typically correlated across different metals and doses. The response to some stresses was, in addition, phylogenetically conserved. This is the first demonstration that community permissiveness is sensitive to metal(loid) stress in a manner that is both partially consistent across stressors and phylogenetically conserved.The ISME Journal advance online publication, 2 August 2016; doi:10.1038/ismej.2016.98.We thank J Magid for access to the CRUCIAL field plot, LK Jensen for technical assistance in the laboratory and SM Milani for assistance in FACS sorting. This work was funded by the Villum Kann Rasmussen Foundation Center of Excellence CREAM (Center for Environmental and Agricultural Microbiology). UK is currently supported through an MRC/BBSRC grant (MR/N007174/1)
Parabrachial Interleukin-6 reduces body weight and food intake and increases thermogenesis to regulate energy metabolism
Chronic low-grade inflammation and increased
serum levels of the cytokine IL-6 accompany obesity.
For brain-produced IL-6, the mechanisms by which it
controls energy balance and its role in obesity
remain unclear. Here, we show that brain-produced
IL-6 is decreased in obese mice and rats in a neuroanatomically and sex-specific manner. Reduced IL-6
mRNA localized to lateral parabrachial nucleus
(lPBN) astrocytes, microglia, and neurons, including
paraventricular hypothalamus-innervating lPBN neurons. IL-6 microinjection into lPBN reduced food
intake and increased brown adipose tissue (BAT)
thermogenesis in male lean and obese rats by
increasing thyroid and sympathetic outflow to BAT.
Parabrachial IL-6 interacted with leptin to reduce
feeding. siRNA-mediated reduction of lPBN IL-6
leads to increased weight gain and adiposity,
reduced BAT thermogenesis, and increased food
intake. Ambient cold exposure partly normalizes
the obesity-induced suppression of lPBN IL-6. These
results indicate that lPBN-produced IL-6 regulates
feeding and metabolism and pinpoints (patho)physiological contexts interacting with lPBN IL-6This research was funded by the Swedish Research Council ( 2014-2945 to K.P.S.; 2017-00792 to I.W.A.; and 2013-7107 to Patrik Rorsman), the Novo Nordisk Foundation Excellence project grant (to K.P.S. and I.W.A.), the Ragnar Söderberg Foundation (to K.P.S.), Harald Jeanssons Stiftelse and Greta Jeanssons Stiftelse (to K.P.S.), Magnus Bergvalls Stiftelse (to K.P.S.), the Wallenberg Foundation and the Center for Molecular and Translational Medicine (to K.P.S.), postdoctoral stipendium from The Swedish Brain Foundation (to D.M.), the ERC ( BFU2015-70664-R and StG-281408 ) (to R.N.), and the NIH ( DK-21397 ) (to H.J.G.)S
Hindbrain insulin controls feeding behavior
Objective: Pancreatic insulin was discovered a century ago, and this discovery led to the first lifesaving treatment for diabetes. While still controversial, nearly one hundred published reports suggest that insulin is also produced in the brain, with most focusing on hypothalamic or cortical insulin-producing cells. However, specific function for insulin produced within the brain remains poorly understood. Here we identify insulin expression in the hindbrain's dorsal vagal complex (DVC), and determine the role of this source of insulin in feeding and metabolism, as well as its response to diet-induced obesity in mice. Methods: To determine the contribution of Ins2-producing neurons to feeding behavior in mice, we used the cross of transgenic RipHER-cre mouse and channelrhodopsin-2 expressing animals, which allowed us to optogenetically stimulate neurons expressing Ins2 in vivo. To confirm the presence of insulin expression in Rip-labeled DVC cells, in situ hybridization was used. To ascertain the specific role of insulin in effects discovered via optogenetic stimulation a selective, CNS applied, insulin receptor antagonist was used. To understand the physiological contribution of insulin made in the hindbrain a virogenetic knockdown strategy was used.Results: Insulin gene expression and presence of insulin-promoter driven fluorescence in rat insulin promoter (Rip)-transgenic mice were detected in the hypothalamus, but also in the DVC. Insulin mRNA was present in nearly all fluorescently labeled cells in DVC. Diet-induced obesity in mice altered brain insulin gene expression, in a neuroanatomically divergent manner; while in the hypothalamus the expected obesity-induced reduction was found, in the DVC diet-induced obesity resulted in increased expression of the insulin gene. This led us to hypothesize a potentially divergent energy balance role of insulin in these two brain areas. To determine the acute impact of activating insulin-producing neurons in the DVC, optic stimulation of light-sensitive channelrhodopsin 2 in Rip-transgenic mice was utilized. Optogenetic photoactivation induced hyperphagia after acute activation of the DVC insulin neurons. This hyperphagia was blocked by central application of the insulin receptor antagonist S961, suggesting the feeding response was driven by insulin. To determine whether DVC insulin has a necessary contribution to feeding and meta-bolism, virogenetic insulin gene knockdown (KD) strategy, which allows for site-specific reduction of insulin gene expression in adult mice, was used. While chow-fed mice failed to reveal any changes of feeding or thermogenesis in response to the KD, mice challenged with a high-fat diet consumed less food. No changes in body weight were identified, possibly resulting from compensatory reduction in thermogenesis. Conclusions: Together, our data suggest an important role for hindbrain insulin and insulin-producing cells in energy homeostasis. (c) 2022 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).</p
Selection for antimicrobial resistance is reduced when embedded in a natural microbial community
This is the final version. Available from Springer Nature via the DOI in this record.Antibiotic resistance has emerged as one of the most pressing, global threats to public health. In single-species experiments selection for antibiotic resistance occurs at very low antibiotic concentrations. However, it is unclear how far these findings can be extrapolated to natural environments, where species are embedded within complex communities. We competed isogenic strains of Escherichia coli, differing exclusively in a single chromosomal resistance determinant, in the presence and absence of a pig faecal microbial community across a gradient of antibiotic concentration for two relevant antibiotics: gentamicin and kanamycin. We show that the minimal selective concentration was increased by more than one order of magnitude for both antibiotics when embedded in the community. We identified two general mechanisms were responsible for the increase in minimal selective concentration: an increase in the cost of resistance and a protective effect of the community for the susceptible phenotype. These findings have implications for our understanding of the evolution and selection of antibiotic resistance, and can inform future risk assessment efforts on antibiotic concentrations.Medical Research Council (MRC)European Commissio
Adrenergic stimulation of adiponectin secretion in visceral mouse adipocytes is blunted in high-fat diet induced obesity
AbstractThe hormone adiponectin is secreted by white adipocytes and has been put forward as a key mediator of obesity-linked insulin resistance and the metabolic syndrome. Although adiponectin was discovered two decades ago, the knowledge about the molecular and cellular regulation of its secretion is incomplete. Here we have investigated the adrenergic regulation of adiponectin secretion in primary visceral (gonadal) adipocytes isolated from lean or obese/diabetic mice. We show that visceral adipocyte adiponectin release is triggered by cAMP/catecholamines via signalling pathways involving adrenergic beta-3-receptors (β3ARs) and Exchange Protein directly Activated by cAMP, isoform 1 (Epac1). The adrenergically stimulated adiponectin secretion is blunted in visceral adipocytes isolated from obese and diabetic mice and our results suggest the existence of a secretory defect. We have previously shown that adiponectin secretion in subcutaneous adipocytes is abolished in the obese/diabetic state due to reduced abundance of β3ARs and Epac1. However, here we show that protein levels of β3ARs and Epac1 are maintained in visceral adipocytes from obese/diabetic mice proposing that other molecular defects underlie the blunted adiponectin release. Gene expression analysis indicate diabesity-associated disturbances of the signalling downstream of Epac1 and/or the exocytotic process itself. Our study proposes that visceral adipocytes partake in the regulated secretion of adiponectin and may thus influence circulating levels of the hormone, in health and in metabolic disease.</jats:p
Resistin is co-secreted with adiponectin in white mouse adipocytes
In the current work we have investigated the cellular and molecular regulation of resistin secretion in cultured and primary mouse adipocytes. Resistin is an adipose tissue hormone proposed to contribute to metabolic disease. In rodents, resistin is secreted from white adipocytes whereas it is in humans synthesised and released from other cell types within white adipose tissue. The metabolic importance of resistin has been studied in both mouse and man, but the regulation of its release remains poorly investigated. Here we define that, in mouse adipocytes, resistin secretion is triggered by an intracellular elevation of cAMP and/or Ca2+. Resistin release is stimulated via activation of beta 3 adrenergic receptors (β3ARs) and the downstream signalling protein exchange protein activated by cAMP (Epac). The secretion of resistin is markedly abrogated in adipocytes isolated from obese and diabetic mice. Immunocytochemical staining demonstrates a significant overlap between signals for resistin and the adipocyte hormone adiponectin. Our data propose that resistin and adiponectin are contained within the same vesicles in mouse adipocytes and that the two hormones are co-secreted in response to the same exocytosis-triggering signals. © 2020 Elsevier Inc
Strengthening of fair face masonry columns with steel hooping
The innovative technique here illustrated is the result of historical evolution of ancient systems of hooping and is conditioned by design criteria that take into account the structural life in the respect of existing elements. It consists in the application of small diameter stainless steel cords able to provide overlapping hoops at every course over the entire height of the column. Three series of uniaxial compression tests, with a total of 19 specimens, were conducted on model brick masonry columns with these variables: cross-section geometry, amount and scheme of confining reinforcement. Laboratory outcomes have shown how the investigated confining systems are able to provide significant gains in terms of compressive strength (values of the confined-to-unconfined strength ratio ranging between 1.45 and 3.00 have been obtained). Test results have been finally used to assess the reliability of the existing design equations suggested by Italian National Research Council for design of FRP strengthening of masonry columns
