1,798 research outputs found
Recommended from our members
A Cultural Criminology of ‘New’ Jihad: Insights from Propaganda Magazines
The backgrounds and modus operandi of more recent jihadi terrorists tend to share factors and characteristics more typically associated with non-political violence such as mass- killings and gang violence. Their attacks, moreover, seem to have been precipitated not by the direct instructions of a formal hierarchy but by the encouragement of propaganda produced and disseminated by networked, media-savvy terrorist groups. It is necessary to explain how these ‘recruitment’ efforts work. Cultural criminology with its understanding of the relationship between mediated meaning and individual experience, can provide such an analysis. The paper presents a qualitative document analysis of 32 propaganda magazines produced by the Islamic State and Al-Qaeda. It demonstrates that they contain significantly more than religious rhetoric and military strategy. Rather, they are part of a process that crystalizes a jihadi subculture that appeals to disaffected and/or marginalized, excitement- seeking youths. The magazines cultivate violence by constructing a militarized style that celebrates outlaw status, where violence is eroticized and aestheticized. They idealize the notion of a jihadi terrorist that is tough and willing to commit brutal violence. The lifestyle portrayed offers the possibility of heroism, excitement, belonging and imminent fame, themes often espoused by conventional, Western consumer culture. The magazines occasionally draw on street jargon, urban music, fashion, films and video games. The subcultural model of jihadi propaganda we explicate provides a novel way of understanding terrorist recruiting tactics and motivations that are not necessarily in opposition to contemporary conventional criminal and ‘mainstream’ cultures, but in resonance with them
The influence of altitude on the anaerobic and aerobic capacities of men in work Final scientific report
Altitude influence on anaerobic and aerobic capacities of working me
Recommended from our members
Halfway to doubling of CO2 radiative forcing
The “double CO2” experiment has become a standard experiment in climate science, and a convenient way of comparing the sensitivity of different climate models. Double CO2 was first used by Arrhenius in the 19th century and in the classic paper by Manabe and Wetherald, published 50 years ago, which marked the start of the modern era of climate modeling. Doubling CO2 now has an iconic role in climate research. The equilibrium climate sensitivity (ECS) is defined as the global-mean surface temperature change resulting from a doubling of CO2, which is a headline result in Intergovernmental Panel on Climate Change (IPCC) assessments. In its most recent assessment IPCC concluded that the ECS “is likely in the range 1.5 to 4.5oC”. We show that we are now halfway to doubling of CO2 since pre-industrial times in terms of radiative forcing, but not in concentration
Short-lived climate forcers from current shipping and petroleum activities in the Arctic
Emissions of short-lived climate forcers (SLCF) in the Arctic region are expected to increase, notably from shipping and petroleum extraction. We here discuss changes in atmospheric SLCF concentrations and resulting radiative forcing (RF) from present day shipping and petroleum activities in the Arctic. The three-dimensional chemistry transport OsloCTM2 and a state of the art radiative forcing model are used, based on a coherent dataset of present day Arctic emissions. We find that the net RF of SLCF of shipping in the Arctic region is negative, mainly due to the direct and indirect RF effects of sulphate emissions, while the net RF of SLCF of petroleum extraction is positive, mainly due to the effects of black carbon aerosols in the air and deposited on snow. Strong seasonal variations of the sensitivities to emissions are found. In terms of annual mean values we find that the Arctic sensitivities to SLCF is similar to global average sensitivities. One exception to this is the stronger snow/ice albedo effect from BC emissions
Is there a trend in cirrus cloud cover due to aircraft traffic?
Trends in cirrus cloud cover have been estimated based on 16 years of data from ISCCP (International Satellite Cloud Climatology Project). The results have been spatially correlated with aircraft density data to determine the changes in cirrus cloud cover due to aircraft traffic. The correlations are only moderate, as many other factors have also contributed to changes in cirrus. Still we regard the results to be indicative of an impact of aircraft on cirrus amount. The main emphasis of our study is on the area covered by the METEOSAT satellite to avoid trends in the ISCCP data resulting from changing satellite viewing geometry. In Europe, which is within the METEOSAT region, we find indications of a trend of about 1-2% cloud cover per decade due to aircraft, in reasonable agreement with previous studies. The positive trend in cirrus in areas of high aircraft traffic contrasts with a general negative trend in cirrus. Extrapolation in time to cover the entire period of aircraft operations and in space to cover the global scale yields a mean estimate of 0.03 Wm<sup>-2</sup> (lower limit 0.01, upper limit 0.08 Wm<sup>-2</sup>) for the radiative forcing due to aircraft induced cirrus. The mean is close to the value given by IPCC (1999) as an upper limit
Inferring Absorbing Organic Carbon Content from AERONET Data
Black carbon, light-absorbing organic carbon (often called brown carbon) and mineral dust are the major light-absorbing aerosols. Currently the sources and formation of brown carbon aerosol in particular are not well understood. In this study we estimated globally the amount of light absorbing organic carbon and black carbon from AERONET measurements. We find that the columnar absorbing organic carbon (brown carbon) levels in biomass burning regions of South-America and Africa are relatively high (about 15-20 magnesium per square meters during biomass burning season), while the concentrations are significantly lower in urban areas in US and Europe. However, we estimated significant absorbing organic carbon amounts from the data of megacities of newly industrialized countries, particularly in India and China, showing also clear seasonality with peak values up to 30-35 magnesium per square meters during the coldest season, likely caused by the coal and biofuel burning used for heating. We also compared our retrievals with the modeled organic carbon by global Oslo CTM for several sites. Model values are higher in biomass burning regions than AERONET-based retrievals, while opposite is true in urban areas in India and China
On the state dependency of fast feedback processes in (palaeo) climate sensitivity
Palaeo data have been frequently used to determine the equilibrium (Charney)
climate sensitivity , and - if slow feedback processes (e.g. land
ice-albedo) are adequately taken into account - they indicate a similar range
as estimates based on instrumental data and climate model results. Most studies
implicitly assume the (fast) feedback processes to be independent of the
background climate state, e.g., equally strong during warm and cold periods.
Here we assess the dependency of the fast feedback processes on the background
climate state using data of the last 800 kyr and a conceptual climate model for
interpretation. Applying a new method to account for background state
dependency, we find K(Wm) using the latest LGM
temperature reconstruction and significantly lower climate sensitivity during
glacial climates. Due to uncertainties in reconstructing the LGM temperature
anomaly, is estimated in the range K(Wm).Comment: submitted to Geophysical Research Letter
The effect of harmonized emissions on aerosol properties in global models – an AeroCom experiment
The effects of unified aerosol sources on global aerosol fields simulated by different models are examined in this paper. We compare results from two AeroCom experiments, one with different (ExpA) and one with unified emissions, injection heights, and particle sizes at the source (ExpB). Surprisingly, harmonization of aerosol sources has only a small impact on the simulated diversity for aerosol burden, and consequently optical properties, as the results are largely controlled by model-specific transport, removal, chemistry (leading to the formation of secondary aerosols) and parameterizations of aerosol microphysics (e.g. the split between deposition pathways) and to a lesser extent on the spatial and temporal distributions of the (precursor) emissions.
The burdens of black carbon and especially sea salt become more coherent in ExpB only, because the large ExpA diversity for these two species was caused by few outliers. The experiment also indicated that despite prescribing emission fluxes and size distributions, ambiguities in the implementation in individual models can lead to substantial differences.
These results indicate the need for a better understanding of aerosol life cycles at process level (including spatial dispersal and interaction with meteorological parameters) in order to obtain more reliable results from global aerosol simulations. This is particularly important as such model results are used to assess the consequences of specific air pollution abatement strategies
An investigation into linearity with cumulative emissions of the climate and carbon cycle response in HadCM3LC
We investigate the extent to which global mean temperature, precipitation, and the carbon cycle are constrained by cumulative carbon emissions throughout four experiments with a fully coupled climate-carbon cycle model. The two paired experiments adopt contrasting, idealised approaches to climate change mitigation at different action points this century, with total emissions exceeding two trillion tonnes of carbon in the later pair. Their initially diverging cumulative emissions trajectories cross after several decades, before diverging again. We find that their global mean temperatures are, to first order, linear with cumulative emissions, though regional differences in temperature of up to 1.5K exist when cumulative emissions of each pair coincide. Interestingly, although the oceanic precipitation response scales with cumulative emissions, the global precipitation response does not, due to a decrease in precipitation over land above cumulative emissions of around one trillion tonnes of carbon (TtC). Most carbon fluxes and stores are less well constrained by cumulative emissions as they reach two trillion tonnes. The opposing mitigation approaches have different consequences for the Amazon rainforest, which affects the linearity with which the carbon cycle responds to cumulative emissions. Averaged over the two fixed-emissions experiments, the transient response to cumulative carbon emissions (TCRE) is 1.95 K TtC-1, at the upper end of the IPCC’s range of 0.8-2.5 K TtC-1
- …
