15,512 research outputs found
Multiresolution analysis using wavelet, ridgelet, and curvelet transforms for medical image segmentation
Copyright @ 2011 Shadi AlZubi et al. This article has been made available through the Brunel Open Access Publishing Fund.The experimental study presented in this paper is aimed at the development of an automatic image segmentation system for classifying region of interest (ROI) in medical images which are obtained from different medical scanners such as PET, CT, or MRI. Multiresolution analysis (MRA) using wavelet, ridgelet, and curvelet transforms has been used in the proposed segmentation system. It is particularly a challenging task to classify cancers in human organs in scanners output using shape or gray-level information; organs shape changes throw different slices in medical stack and the gray-level intensity overlap in soft tissues. Curvelet transform is a new extension of wavelet and ridgelet transforms which aims to deal with interesting phenomena occurring along curves. Curvelet transforms has been tested on medical data sets, and results are compared with those obtained from the other transforms. Tests indicate that using curvelet significantly improves the classification of abnormal tissues in the scans and reduce the surrounding noise
Patent Information Retrieval: Approaching a Method and Analyzing Nanotechnology Patent Collaborations
ArticleThis is the final version of the article. Available from Springer Verlag via the DOI in this record.Many challenges still remain in the processing of explicit technological knowledge documents such as patents. Given the limitations and drawbacks of the existing approaches, this research sets out to develop an improved method for searching patent databases and extracting patent information to increase the efficiency and reliability of nanotechnology patent information retrieval process and to empirically analyse patent collaboration. A tech-mining method was applied and the subsequent analysis was performed using Thomson data analyser software. The findings show that nations such as Korea and Japan are highly collaborative in sharing technological knowledge across academic and corporate organisations within their national boundaries, and China presents, in some cases, a great illustration of effective patent collaboration and co-inventorship. This study also analyses key patent strengths by country, organisation and technology
Structural and optical properties of surfactant assisted SiO2-TiO2 hybrid matrix for pH sensing: sol-gel approach
Structural and optical properties of surfactant-assisted SiO2-TiO2 hybrid matrix as a highly responsive optical sensing material by sol-gel method are investigated. Microscopic results indicate the uniform morphology with large pores without any cracks. Matrices have a high surface area (489–342 m2/g), which has more capability to sense the broader pH range. From UV–visible spectroscopy, it is found that after encapsulation, matrix has ~ 78 % optical transparency with low refractive index of 1.44 corresponding to thickness 138.7 nm. Sensing analysis revealed that the prepared coating has good sensitivity at pH 12 and fast response time. Low refractive index and highly porous matrix, combined for achieving a good responsive optical chemical sensors. This research also opens an aveanue for ths material to be considered as a functional coating
Evolutionary quantum cosmology in a gauge-fixed picture
We study the classical and quantum models of a flat
Friedmann-Robertson-Walker (FRW) space-time, coupled to a perfect fluid, in the
context of the consensus and a gauge-fixed Lagrangian frameworks. It is shown
that, either in the usual or in the gauge-fixed actions, the evolution of the
universe based on the classical cosmology represents a late time power law
expansion, coming from a big-bang singularity in which the scale factor goes to
zero for the standard matter, and tending towards a big-rip singularity in
which the scale factor diverges for the phantom fluid. We then employ the
familiar canonical quantization procedure in the given cosmological setting to
find the cosmological wave functions in the corresponding minisuperspace. Using
a gauge-fixed (reduced) Lagrangian, we show that, it may lead to a
Schr\"{o}dinger equation for the quantum-mechanical description of the model
under consideration, the eigenfunctions of which can be used to construct the
time dependent wave function of the universe. We use the resulting wave
function in order to investigate the possibility of the avoidance of classical
singularities due to quantum effects by means of the many-worlds and
ontological interpretation of quantum cosmology.Comment: 15 pages, 10 figures, typos corrected, Refs. adde
Weak-Light Ultraslow Vector Optical Solitons via Electromagnetically Induced Transparency
We propose a scheme to generate temporal vector optical solitons in a
lifetime broadened five-state atomic medium via electromagnetically induced
transparency. We show that this scheme, which is fundamentally different from
the passive one by using optical fibers, is capable of achieving
distortion-free vector optical solitons with ultraslow propagating velocity
under very weak drive conditions. We demonstrate both analytically and
numerically that it is easy to realize Manakov temporal vector solitons by
actively manipulating the dispersion and self- and cross-phase modulation
effects of the system.Comment: 4 pages, 4 figure
Macroscopic quantum tunneling and phase diffusion in a LaSrCuO intrinsic Josephson junction stack
We performed measurements of switching current distribution in a submicron
LaSrCuO (LSCO) intrinsic Josephson junction (IJJ) stack in a
wide temperature range. The escape rate saturates below approximately 2\,K,
indicating that the escape event is dominated by a macroscopic quantum
tunneling (MQT) process with a crossover temperature K. We
applied the theory of MQT for IJJ stacks, taking into account dissipation and
the phase re-trapping effect in the LSCO IJJ stack. The theory is in good
agreement with the experiment both in the MQT and in the thermal activation
regimes.Comment: 9 pages, 7 figure
Laser tattoo removal comparison between 1064 and 532 NM of a Q-switched ND:YAG laser treatment
Invention of the Q-switch advanced laser method is the most effective methods of tattoo removal compared to other methods of i.e. chemical, mechanical and surgical. In this study, we are reporting black pigment tattoo removal by comparing two wavelengths 532 nm and 1064 nm of Q-switched Nd-YAG laser. Using a single-pulse laser at 1064 nm wavelength, the maximum laser fluence for skin damage is 3.04 J/cm2 with pulse energy 0.55 J. While, at 532 nm wavelength, maximum laser fluence is 0.5 J/cm2 with pulse energy 0.42 J at 8-10 ns for tattooed skins. Moreover, after 1064 nm and 532 nm laser irradiations, skin biopsy of black tattooed rat’s skin demonstrates the ink granules local redistribution. Microscopic study indicates that black ink particles become smaller and vanished from the skins after 1064 nm laser treatment. The findings of this study indicate that 1064 nm wavelengths of Q-switched Nd-YAG laser treatment with 0.55 J pulse energy, is one of the significant methods of black tattoo removal with remarkable differences
- …
