1,227 research outputs found
Survey strategy optimization for the Atacama Cosmology Telescope
In recent years there have been significant improvements in the sensitivity
and the angular resolution of the instruments dedicated to the observation of
the Cosmic Microwave Background (CMB). ACTPol is the first polarization
receiver for the Atacama Cosmology Telescope (ACT) and is observing the CMB sky
with arcmin resolution over about 2000 sq. deg. Its upgrade, Advanced ACTPol
(AdvACT), will observe the CMB in five frequency bands and over a larger area
of the sky. We describe the optimization and implementation of the ACTPol and
AdvACT surveys. The selection of the observed fields is driven mainly by the
science goals, that is, small angular scale CMB measurements, B-mode
measurements and cross-correlation studies. For the ACTPol survey we have
observed patches of the southern galactic sky with low galactic foreground
emissions which were also chosen to maximize the overlap with several galaxy
surveys to allow unique cross-correlation studies. A wider field in the
northern galactic cap ensured significant additional overlap with the BOSS
spectroscopic survey. The exact shapes and footprints of the fields were
optimized to achieve uniform coverage and to obtain cross-linked maps by
observing the fields with different scan directions. We have maximized the
efficiency of the survey by implementing a close to 24 hour observing strategy,
switching between daytime and nighttime observing plans and minimizing the
telescope idle time. We describe the challenges represented by the survey
optimization for the significantly wider area observed by AdvACT, which will
observe roughly half of the low-foreground sky. The survey strategies described
here may prove useful for planning future ground-based CMB surveys, such as the
Simons Observatory and CMB Stage IV surveys.Comment: 14 Pages, 9 Figures, 4 Table
Two kinds of pink: development and difference in Germanic colour semantics
Max Planck Gesellschaft
Early Life Socioeconomic Circumstance and Late Life Brain Hyperintensities : A Population Based Cohort Study
Funding: Image acquisition and image analysis for this study was funded by the Alzheimer's Research Trust (now Alzheimer's Research UK). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Acknowledgments The authors would like to thank the participants of the Aberdeen 1936 Birth Cohort (ABC36), without whom this research would not have been possible.Peer reviewedPublisher PD
The Atacama Cosmology Telescope: The polarization-sensitive ACTPol instrument
The Atacama Cosmology Telescope (ACT) is designed to make high angular
resolution measurements of anisotropies in the Cosmic Microwave Background
(CMB) at millimeter wavelengths. We describe ACTPol, an upgraded receiver for
ACT, which uses feedhorn-coupled, polarization-sensitive detector arrays, a 3
degree field of view, 100 mK cryogenics with continuous cooling, and meta
material anti-reflection coatings. ACTPol comprises three arrays with separate
cryogenic optics: two arrays at a central frequency of 148 GHz and one array
operating simultaneously at both 97 GHz and 148 GHz. The combined instrument
sensitivity, angular resolution, and sky coverage are optimized for measuring
angular power spectra, clusters via the thermal Sunyaev-Zel'dovich and kinetic
Sunyaev-Zel'dovich signals, and CMB lensing due to large scale structure. The
receiver was commissioned with its first 148 GHz array in 2013, observed with
both 148 GHz arrays in 2014, and has recently completed its first full season
of operations with the full suite of three arrays. This paper provides an
overview of the design and initial performance of the receiver and related
systems
Determinants of Fatigue after First-Ever Ischemic Stroke during Acute Phase
© 2014 The Authors. Published by PLOS. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1371/journal.pone.0110037
A correction to the article was made on 19/12/2012: https://doi.org/10.1371/journal.pone.011646
Must we measure what we mean?
This paper excavates a debate concerning the claims of ordinary language philosophers that took place during the middle of the last century. The debate centers on the status of statements about “what we say”. On one side of the debate, critics of ordinary language philosophy argued that statements about “what we say” should be evaluated as empirical observations about how people do in fact speak, on a par with claims made in the language sciences. By that standard, ordinary language philosophers were not entitled to the claims that they made about what we would say about various topics. On the other side of the debate, defenders of the methods of ordinary language philosophy sought to explain how philosophers can be entitled to statements about what we would say without engaging in extensive observations of how people do in fact use language. In this paper I defend the idea that entitlement to claims about what we say can be had in a way that doesn’t require empirical observation, and I argue that ordinary language philosophers are (at least sometimes) engaged in a different project than linguists or empirically minded philosophers of language, which is subject to different conditions of success
CMBPol Mission Concept Study: Prospects for polarized foreground removal
In this report we discuss the impact of polarized foregrounds on a future
CMBPol satellite mission. We review our current knowledge of Galactic polarized
emission at microwave frequencies, including synchrotron and thermal dust
emission. We use existing data and our understanding of the physical behavior
of the sources of foreground emission to generate sky templates, and start to
assess how well primordial gravitational wave signals can be separated from
foreground contaminants for a CMBPol mission. At the estimated foreground
minimum of ~100 GHz, the polarized foregrounds are expected to be lower than a
primordial polarization signal with tensor-to-scalar ratio r=0.01, in a small
patch (~1%) of the sky known to have low Galactic emission. Over 75% of the sky
we expect the foreground amplitude to exceed the primordial signal by about a
factor of eight at the foreground minimum and on scales of two degrees. Only on
the largest scales does the polarized foreground amplitude exceed the
primordial signal by a larger factor of about 20. The prospects for detecting
an r=0.01 signal including degree-scale measurements appear promising, with 5
sigma_r ~0.003 forecast from multiple methods. A mission that observes a range
of scales offers better prospects from the foregrounds perspective than one
targeting only the lowest few multipoles. We begin to explore how optimizing
the composition of frequency channels in the focal plane can maximize our
ability to perform component separation, with a range of typically 40 < nu <
300 GHz preferred for ten channels. Foreground cleaning methods are already in
place to tackle a CMBPol mission data set, and further investigation of the
optimization and detectability of the primordial signal will be useful for
mission design.Comment: 42 pages, 14 figures, Foreground Removal Working Group contribution
to the CMBPol Mission Concept Study, v2, matches AIP versio
Detection of the pairwise kinematic Sunyaev-Zel'dovich effect with BOSS DR11 and the Atacama Cosmology Telescope
We present a new measurement of the kinematic Sunyaev-Zeldovich effect using
data from the Atacama Cosmology Telescope (ACT) and the Baryon Oscillation
Spectroscopic Survey (BOSS). Using 600 square degrees of overlapping sky area,
we evaluate the mean pairwise baryon momentum associated with the positions of
50,000 bright galaxies in the BOSS DR11 Large Scale Structure catalog. A
non-zero signal arises from the large-scale motions of halos containing the
sample galaxies. The data fits an analytical signal model well, with the
optical depth to microwave photon scattering as a free parameter determining
the overall signal amplitude. We estimate the covariance matrix of the mean
pairwise momentum as a function of galaxy separation, using microwave sky
simulations, jackknife evaluation, and bootstrap estimates. The most
conservative simulation-based errors give signal-to-noise estimates between 3.6
and 4.1 for varying galaxy luminosity cuts. We discuss how the other error
determinations can lead to higher signal-to-noise values, and consider the
impact of several possible systematic errors. Estimates of the optical depth
from the average thermal Sunyaev-Zeldovich signal at the sample galaxy
positions are broadly consistent with those obtained from the mean pairwise
momentum signal.Comment: 15 pages, 8 figures, 2 table
Cyclists in shared bus lanes: could there be unrecognised impacts on bus journey times?
This paper contributes to debates around improving the modelling of cycles, through an exploratory case study of bus–cycle interactions in London. This case study examines undocumented delays to buses caused by high volumes of cyclists in bus lanes. It has generally been assumed that cyclists do not noticeably delay buses in shared lanes. However, in many contexts where cyclists routinely share bus lanes, cyclist numbers have historically been low. In some such places, bus lanes are now seeing very high volumes of cyclists, far above those previously studied. This may have implications for bus – and cycle – journey times, but traditionally traffic modelling has not represented the effects of such interactions well. With some manipulation of parameters taken from models of other cities, the model described here demonstrates that cycles can cause significant delays to buses in shared lanes, at high cycling volumes. These delays are likely to become substantially larger if London's cycling demographic becomes more diverse, because cyclist speeds will decline. Hence bus journey time benefits may derive from separating cycles from buses, where cycle flows are high. The project also suggests that microsimulation modelling software, as typically used, remains problematic for representing cyclists
The Atacama Cosmology Telescope: measuring radio galaxy bias through cross-correlation with lensing
We correlate the positions of radio galaxies in the FIRST survey with the cosmic microwave background lensing convergence estimated from the Atacama Cosmology Telescope over 470 deg2 to determine the bias of these galaxies. We remove optically cross-matched sources
below redshift z = 0.2 to preferentially select active galactic nuclei (AGN). We measure the
angular cross-power spectrum Cκg
l at 4.4σ significance in the multipole range 100 < l < 3000, corresponding to physical scales within ≈2–60 Mpc at an effective redshift zeff = 1.5. Modelling
the AGN population with a redshift-dependent bias, the cross-spectrum is well fitted by the Planck best-fitting � cold dark matter cosmological model. Fixing the cosmology
and assumed redshift distribution of sources, we fit for the overall bias model normalization, finding b(zeff) = 3.5 ± 0.8 for the full galaxy sample and b(zeff) = 4.0 ± 1.1(3.0 ± 1.1) for sources brighter (fainter) than 2.5 mJy. This measurement characterizes the typical halo mass
of radio-loud AGN: we find log(Mhalo/ M) = 13.6+0.3 −0.4
- …
