682 research outputs found

    Characterization of ageing resistant transparent nanocrystalline yttria-stabilized zirconia implants.

    Get PDF
    The "Window to the Brain" is a transparent cranial implant under development, based on nanocrystalline yttria-stabilized zirconia (nc-YSZ) transparent ceramic material. Previous work has demonstrated the feasibility of this material to facilitate brain imaging over time, but the long-term stability of the material over decades in the body is unknown. In this study, the low-temperature degradation (LTD) of nc-YSZ of 3, 6, and 8 mol % yttria is compared before and after accelerated ageing treatments following ISO standards for assessing the ageing resistance of zirconia ceramics. After 100 hr of accelerated ageing (equivalent to many decades of ageing in the body), the samples do not show any signs of phase transformation to monoclinic by X-ray diffraction and micro-Raman spectroscopy. Moreover, the mechanical hardness of the samples did not decrease, and changes in optical transmittance from 500 to 1000 nm due to ageing treatments was minimal (below 3% for all samples), and unlikely to be due to phase transformation of surface crystals to monoclinic. These results indicate the nc-YSZ has excellent ageing resistance and can withstand long-term implantation conditions without exhibiting LTD

    Analysis of mechanism of sand deposition inside a fishing port using BG model

    Get PDF
    A large amount of sand deposited in the wave-shelter zone of Ohtsu fishing port located in northern Ibaraki Prefecture, Japan, resulting in a difficulty in navigation at the pot entrance. The BG model (a three-dimensional model for predicting beach changes based on Bagnold's concept) ws used to solve this problem. Measures against sand deposition inside the port were investigated and the most appropriate measure found for preventing sand deposition was the extension of a jetty by 100 m at the tip of the west breakwater. The applicability of the BG model to such prediction was confirmed

    A Molecular Line Observation toward Massive Clumps Associated with Infrared Dark Clouds

    Full text link
    We have surveyed the N2H+ J=1-0, HC3N J=5-4, CCS J_N=4_3-3_2, NH3 (J, K) = (1, 1), (2, 2), (3, 3), and CH3OH J=7-6 lines toward the 55 massive clumps associated with infrared dark clouds by using the Nobeyama Radio Observatory 45 m telescope and the Atacama Submillimeter Telescope Experiment 10 m telescope. The N2H+, HC3N, and NH3 lines are detected toward most of the objects. On the other hand, the CCS emission is detected toward none of the objects. The [CCS]/[N2H+] ratios are found to be mostly lower than unity even in the Spitzer 24 micron dark objects. This suggests that most of the massive clumps are chemically more evolved than the low-mass starless cores. The CH3OH emission is detected toward 18 out of 55 objects. All the CH3OH-detected objects are associated with the Spitzer 24 micron sources, suggesting that star formation has already started in all the CH3OH-detected objects. The velocity widths of the CH3OH J_K=7_0-6_0 A+ and 7_{-1}-6_{-1} E lines are broader than those of N2H+ J=1-0. The CH3OH J_K=7_0-6_0 A+ and 7_{-1}-6_{-1} E lines tend to have broader linewidth in the MSX dark objects than in the others, the former being younger or less luminous than the latter. The origin of the broad emission is discussed in terms of the interaction between an outflow and an ambient cloud.Comment: Accepted to Ap

    Mitochondrial phylogeography and demographic history of the Vicuña: implications for conservation

    Get PDF
    The vicuña (Vicugna vicugna; Miller, 1924) is a conservation success story, having recovered from near extinction in the 1960s to current population levels estimated at 275 000. However, lack of information about its demographic history and genetic diversity has limited both our understanding of its recovery and the development of science-based conservation measures. To examine the evolution and recent demographic history of the vicuña across its current range and to assess its genetic variation and population structure, we sequenced mitochondrial DNA from the control region (CR) for 261 individuals from 29 populations across Peru, Chile and Argentina. Our results suggest that populations currently designated as Vicugna vicugna vicugna and Vicugna vicugna mensalis comprise separate mitochondrial lineages. The current population distribution appears to be the result of a recent demographic expansion associated with the last major glacial event of the Pleistocene in the northern (18 to 22°S) dry Andes 14–12 000 years ago and the establishment of an extremely arid belt known as the 'Dry Diagonal' to 29°S. Within the Dry Diagonal, small populations of V. v. vicugna appear to have survived showing the genetic signature of demographic isolation, whereas to the north V. v. mensalis populations underwent a rapid demographic expansion before recent anthropogenic impacts
    corecore