6,483 research outputs found

    Acceleration of cosmic rays and gamma-ray emission from supernova remnant/molecular cloud associations

    Get PDF
    The gamma-ray observations of molecular clouds associated with supernova remnants are considered one of the most promising ways to search for a solution of the problem of cosmic ray origin. Here we briefly review the status of the field, with particular emphasis on the theoretical and phenomenological aspects of the problem.Comment: Invited talk at SUGAR201

    Tying Odysseus to the Mast: Evidence from a Commitment Savings Product in the Philippines

    Get PDF
    We designed a commitment savings product for a Philippine bank and implemented it using a randomized control methodology. The savings product was intended for individuals who want to commit now to restrict access to their savings, and who were sophisticated enough to engage in such a mechanism. We conducted a baseline survey on 1777 existing or former clients of a bank. One month later, we offered the commitment product to a randomly chosen subset of 710 clients; 202 (28.4 percent) accepted the offer and opened the account. In the baseline survey, we asked hypothetical time discounting questions. Women who exhibited a lower discount rate for future relative to current tradeoffs, and hence potentially have a preference for commitment, were indeed significantly more likely to open the commitment savings account. After twelve months, average savings balances increased by 81 percentage points for those clients assigned to the treatment group relative to those assigned to the control group. We conclude that the savings response represents a lasting change in savings, and not merely a short-term response to a new product.Savings, commitment, hyperbolic preferences, microfinance, development economics, program evaluation, field experiment, self-control

    Non-linear diffusion of cosmic rays escaping from supernova remnants - I. The effect of neutrals

    Get PDF
    Supernova remnants are believed to be the main sources of galactic Cosmic Rays (CR). Within this framework, particles are accelerated at supernova remnant shocks and then released in the interstellar medium. The mechanism through which CRs are released and the way in which they propagate still remain open issues. The main difficulty is the high non-linearity of the problem: CRs themselves excite the magnetic turbulence that confines them close to their sources. We solve numerically the coupled differential equations describing the evolution in space and time of the escaping particles and of the waves generated through the CR streaming instability. The warm ionized and warm neutral phases of the interstellar medium are considered. These phases occupy the largest fraction of the disc volume, where most supernovae explode, and are characterised by the significant presence of neutral particles. The friction between those neutrals and ions results in a very effective wave damping mechanism. It is found that streaming instability affects the propagation of CRs even in the presence of ion-neutral friction. The diffusion coefficient can be suppressed by more than a factor of 2\sim 2 over a region of few tens of pc around the remnant. The suppression increases for smaller distances. The propagation of 10\approx 10 GeV particles is affected for several tens of kiloyears after escape, while 1\approx 1 TeV particles are affected for few kiloyears. This might have a great impact on the interpretation of gamma-ray observations of molecular clouds located in the vicinity of supernova remnants.Comment: Revised to match the version published in MNRA

    Dynamic structure factor for 3He in two-dimensions

    Full text link
    Recent neutron scattering experiments on 3He films have observed a zero-sound mode, its dispersion relation and its merging with -and possibly emerging from- the particle-hole continuum. Here we address the study of the excitations in the system via quantum Monte Carlo methods: we suggest a practical scheme to calculate imaginary time correlation functions for moderate-size fermionic systems. Combined with an efficient method for analytic continuation, this scheme affords an extremely convincing description of the experimental findings.Comment: 5 pages, 5 figure

    The effect of emigration on child labor

    Full text link
    We present a general model of child labor that incorporates the various components presented in the literature as explanations for its existence. Our proposal is to mitigate the phenomenon by encouraging temporary emigration. It emerges that the remittances sent by the emigrating parents might enable not only their children, but also others, to stop working. We show how this equilibrium can be sustained even upon the return of the emigrant parents to their home country

    Hanging In, Stepping up and Stepping Out: Livelihood Aspirations and Strategies of the Poor Development in Practice

    Get PDF
    In recent years understanding of poverty and of ways in which people escape from or fall into poverty has become more holistic. This should improve the capabilities of policy analysts and others working to reduce poverty, but it also makes analysis more complex. This paper describes a simple schema which integrates multidimensional, multilevel and dynamic understandings of poverty, of poor people’s livelihoods, and of changing roles of agricultural systems. The paper suggests three broad types of strategy pursued by poor people: ‘hanging in’; ‘stepping up’; and ‘stepping out’. This simple schema explicitly recognises the dynamic aspirations of poor people; diversity among them; and livelihood diversification. It also brings together aspirations of poor people with wider sectoral, inter-sectoral and macro-economic questions about policies necessary for realisation of those aspirations

    Bulk Lorentz factors of Gamma-Ray Bursts

    Get PDF
    Knowledge of the bulk Lorentz factor Γ0\Gamma_{0} of GRBs allows us to compute their comoving frame properties shedding light on their physics. Upon collisions with the circumburst matter, the fireball of a GRB starts to decelerate, producing a peak or a break (depending on the circumburst density profile) in the light curve of the afterglow. Considering all bursts with known redshift and with an early coverage of their emission, we find 67 GRBs with a peak in their optical or GeV light curves at a time tpt_{\rm p}. For another 106 GRBs we set an upper limit tpULt_{\rm p}^{\rm UL}. We show that tpt_{\rm p} is due to the dynamics of the fireball deceleration and not to the passage of a characteristic frequency of the synchrotron spectrum across the optical band. Considering the tpt_{\rm p} of 66 long GRBs and the 85 most constraining upper limits, using censored data analysis methods, we reconstruct the most likely distribution of tpt_{\rm p}. All tpt_{\rm p} are larger than the time tp,gt_{\rm p,g} when the prompt emission peaks, and are much larger than the time tpht_{\rm ph} when the fireball becomes transparent. The reconstructed distribution of Γ0\Gamma_0 has median value \sim300 (150) for a uniform (wind) circumburst density profile. In the comoving frame, long GRBs have typical isotropic energy, luminosity, and peak energy Eiso=3(8)×1050\langle E_{\rm iso}\rangle=3(8)\times 10^{50} erg, Liso=3(15)×1047\langle L_{\rm iso}\rangle=3(15) \times 10^{47} erg s1^{-1} , and Epeak=1(2)\langle E_{\rm peak}\rangle =1(2) keV in the homogeneous (wind) case. We confirm that the significant correlations between Γ\Gamma and the rest frame isotropic energy (EisoE_{\rm iso}), luminosity (LisoL_{\rm iso}) and peak energy (EpeakE_{\rm peak}) are not due to selection effects. Assuming a typical opening angle of 5 degrees, we derive the distribution of the jet baryon loading which is centered around a few 106M10^{-6} {\rm M_{\odot}}.Comment: 19 pages, 11 figures, 6 tables. Accepted for publication on Astronomy & Astrophysic

    The faster the narrower: characteristic bulk velocities and jet opening angles of Gamma Ray Bursts

    Full text link
    The jet opening angle theta_jet and the bulk Lorentz factor Gamma_0 are crucial parameters for the computation of the energetics of Gamma Ray Bursts (GRBs). From the ~30 GRBs with measured theta_jet or Gamma_0 it is known that: (i) the real energetic E_gamma, obtained by correcting the isotropic equivalent energy E_iso for the collimation factor ~theta_jet^2, is clustered around 10^50-10^51 erg and it is correlated with the peak energy E_p of the prompt emission and (ii) the comoving frame E'_p and E'_gamma are clustered around typical values. Current estimates of Gamma_0 and theta_jet are based on incomplete data samples and their observed distributions could be subject to biases. Through a population synthesis code we investigate whether different assumed intrinsic distributions of Gamma_0 and theta_jet can reproduce a set of observational constraints. Assuming that all bursts have the same E'_p and E'_gamma in the comoving frame, we find that Gamma_0 and theta_jet cannot be distributed as single power-laws. The best agreement between our simulation and the available data is obtained assuming (a) log-normal distributions for theta_jet and Gamma_0 and (b) an intrinsic relation between the peak values of their distributions, i.e theta_jet^2.5*Gamma_0=const. On average, larger values of Gamma_0 (i.e. the "faster" bursts) correspond to smaller values of theta_jet (i.e. the "narrower"). We predict that ~6% of the bursts that point to us should not show any jet break in their afterglow light curve since they have sin(theta_jet)<1/Gamma_0. Finally, we estimate that the local rate of GRBs is ~0.3% of all local SNIb/c and ~4.3% of local hypernovae, i.e. SNIb/c with broad-lines.Comment: 15 pages, 8 figures, 1 table. Accepted for publication in MNRA
    corecore