46,355 research outputs found
The spectra of mixed He-He droplets
The diffusion Monte Carlo technique is used to calculate and analyze the
excitation spectrum of He atoms bound to a cluster of He atoms, by
using a previously determined optimum filling of single-fermion orbits with
well defined orbital angular momentum , spin and parity quantum numbers.
The study concentrates on the energies and shapes of the three kinds of states
for which the fermionic part of the wave function is a single Slater
determinant: maximum or maximum states within a given orbit, and fully
polarized clusters. The picture that emerges is that of systems with strong
shell effects whose binding and excitation energies are essentially determined
over configuration at fixed number of particles and spin, i.e., by the monopole
properties of an effective Hamiltonian.Comment: 14 pages, 15 figure
The cosmological origin of the Tully-Fisher relation
We use high-resolution cosmological simulations that include the effects of
gasdynamics and star formation to investigate the origin of the Tully-Fisher
relation in the standard Cold Dark Matter cosmogony. Luminosities are computed
for each model galaxy using their full star formation histories and the latest
spectrophotometric models. We find that at z=0 the stellar mass of model
galaxies is proportional to the total baryonic mass within the virial radius of
their surrounding halos. Circular velocity then correlates tightly with the
total luminosity of the galaxy, reflecting the equivalence between mass and
circular velocity of systems identified in a cosmological context. The slope of
the relation steepens slightly from the red to the blue bandpasses, and is in
fairly good agreement with observations. Its scatter is small, decreasing from
\~0.45 mag in the U-band to ~0.34 mag in the K-band. The particular
cosmological model we explore here seems unable to account for the zero-point
of the correlation. Model galaxies are too faint at z=0 (by about two
magnitudes) if the circular velocity at the edge of the luminous galaxy is used
as an estimator of the rotation speed. The Tully-Fisher relation is brighter in
the past, by about ~0.7 magnitudes in the B-band at z=1, at odds with recent
observations of z~1 galaxies. We conclude that the slope and tightness of the
Tully-Fisher relation can be naturally explained in hierarchical models but
that its normalization and evolution depend strongly on the star formation
algorithm chosen and on the cosmological parameters that determine the
universal baryon fraction and the time of assembly of galaxies of different
mass.Comment: 5 pages, 4 figures included, submitted to ApJ (Letters
Footballs, Conical Singularities and the Liouville Equation
We generalize the football shaped extra dimensions scenario to an arbitrary
number of branes. The problem is related to the solution of the Liouville
equation with singularities and explicit solutions are presented for the case
of three branes. The tensions of the branes do not need to be tuned with each
other but only satisfy mild global constraints.Comment: 15 pages, Refs. added, minor changes. Typo in eq. 4.3 corrected.
Version to be published in PR
Analysis of extinction in a non-premixed turbulent flame using large eddy simulation and the chemical explosion mode analysis
Tidal Torques and the Orientation of Nearby Disk Galaxies
We use numerical simulations to investigate the orientation of the angular
momentum axis of disk galaxies relative to their surrounding large scale
structure. We find that this is closely related to the spatial configuration at
turnaround of the material destined to form the galaxy, which is often part of
a coherent two-dimensional slab criss-crossed by filaments. The rotation axis
is found to align very well with the intermediate principal axis of the inertia
momentum tensor at this time. This orientation is approximately preserved
during the ensuing collapse, so that the rotation axis of the resulting disk
ends up lying on the plane traced by the protogalactic material at turnaround.
This suggests a tendency for disks to align themselves so that their rotation
axis is perpendicular to the minor axis of the structure defined by surrounding
matter. One example of this trend is provided by our own Galaxy, where the
Galactic plane is almost at right angles with the supergalactic plane (SGP)
drawn by nearby galaxies; indeed, the SGP latitude of the North Galactic Pole
is just 6 degrees. We have searched for a similar signature in catalogs of
nearby disk galaxies, and find a significant excess of edge-on spirals (for
which the orientation of the disk rotation axis may be determined
unambiguously) highly inclined relative to the SGP. This result supports the
view that disk galaxies acquire their angular momentum as a consequence of
early tidal torques acting during the expansion phase of the protogalactic
material.Comment: 5 pages, 2 figures, accepted for publication in ApJ
Light charged Higgs boson production at the Large Hadron electron Collider
We study the production of a light charged Higgs boson at the future Large
Hadron electron Collider (LHeC), through the process
considering both decay channels and in the final state. We analyse these processes in the context of the
2-Higgs Doublet Model Type III (2HDM-III) and assess the LHeC sensitivity to
such signals against a variety of both reducible and irreducible
backgrounds. We confirm that prospects for detection in the 2HDM-III are
excellent assuming standard collider energy and luminosity conditions.Comment: 12 pages, 12 figures. Accepted in Physical Review
Correlation Between the Halo Concentration (c) and the Virial Mass (Mvir) Determined from X-ray Clusters
Numerical simulations of structure formation have suggested that there exists
a good correlation between the halo concentration c (or the characteristic
density delta_c) and the virial mass Mvir for any virialized dark halo
described by the Navarro, Frenk & White (1995) density profile. In this Letter,
we present an observational determination of the c-Mvir (or delta_c-Mvir)
relation in the mass range of 10^14< Mvir <10^16 (solar mass) using a sample of
63 X-ray luminous clusters. The best-fit power law relation, which is roughly
independent of the values of Omega_M and Lambda, is c propto Mvir^(-0.5) or
delta_c propto Mvir^(-1.2), indicating n=-0.7 for a scale-free power spectrum
of the primordial density fluctuations. We discuss the possible reasons for the
conflict with the predictions by typical CDM models such as SCDM, LCDM and
OCDM.Comment: 13 pages, 1 figure, two tables. Accepted for publication in ApJ
Hollowgraphy Driven Holography: Black Hole with Vanishing Volume Interior
Hawking-Bekenstein entropy formula seems to tell us that no quantum degrees
of freedom can reside in the interior of a black hole. We suggest that this is
a consequence of the fact that the volume of any interior sphere of finite
surface area simply vanishes. Obviously, this is not the case in general
relativity. However, we show that such a phenomenon does occur in various
gravitational theories which admit a spontaneously induced general relativity.
In such theories, due to a phase transition (one parameter family degenerates)
which takes place precisely at the would have been horizon, the recovered
exterior Schwarzschild solution connects, by means of a self-similar transition
profile, with a novel 'hollow' interior exhibiting a vanishing spatial volume
and a locally varying Newton constant. This constitutes the so-called
'hollowgraphy' driven holography.Comment: Honorable Mention Essay - Gravity Research Foundation (2010
- …
