3,113 research outputs found
On the nonexistence of Smith-Toda complexes
Let p be a prime. The Smith-Toda complex V(k) is a finite spectrum whose
BP-homology is isomorphic to BP_*/(p,v_1,...,v_k). For example, V(-1) is the
sphere spectrum and V(0) the mod p Moore spectrum. In this paper we show that
if p > 5, then V((p+3)/2) does not exist and V((p+1)/2), if it exists, is not a
ring spectrum. The proof uses the new homotopy fixed point spectral sequences
of Hopkins and Miller.Comment: 10 pages, AMSLate
Liquid stability in a model for ortho-terphenyl
We report an extensive study of the phase diagram of a simple model for
ortho-terphenyl, focusing on the limits of stability of the liquid state.
Reported data extend previous studies of the same model to both lower and
higher densities and to higher temperatures. We estimate the location of the
homogeneous liquid-gas nucleation line and of the spinodal locus. Within the
potential energy landscape formalism, we calculate the distributions of depth,
number, and shape of the potential energy minima and show that the statistical
properties of the landscape are consistent with a Gaussian distribution of
minima over a wide range of volumes. We report the volume dependence of the
parameters entering in the Gaussian distribution (amplitude, average energy,
variance). We finally evaluate the locus where the configurational entropy
vanishes, the so-called Kauzmann line, and discuss the relative location of the
spinodal and Kauzmann loci.Comment: RevTeX 4, 8 pages, 8 eps figure
Recommended from our members
Distinct mechanisms of Drosophila CRYPTOCHROME-mediated light-evoked membrane depolarization and in vivo clock resetting.
Drosophila CRYPTOCHROME (dCRY) mediates electrophysiological depolarization and circadian clock resetting in response to blue or ultraviolet (UV) light. These light-evoked biological responses operate at different timescales and possibly through different mechanisms. Whether electron transfer down a conserved chain of tryptophan residues underlies biological responses following dCRY light activation has been controversial. To examine these issues in in vivo and in ex vivo whole-brain preparations, we generated transgenic flies expressing tryptophan mutant dCRYs in the conserved electron transfer chain and then measured neuronal electrophysiological phototransduction and behavioral responses to light. Electrophysiological-evoked potential analysis shows that dCRY mediates UV and blue-light-evoked depolarizations that are long lasting, persisting for nearly a minute. Surprisingly, dCRY appears to mediate red-light-evoked depolarization in wild-type flies, absent in both cry-null flies, and following acute treatment with the flavin-specific inhibitor diphenyleneiodonium in wild-type flies. This suggests a previously unsuspected functional signaling role for a neutral semiquinone flavin state (FADH•) for dCRY. The W420 tryptophan residue located closest to the FAD-dCRY interaction site is critical for blue- and UV-light-evoked electrophysiological responses, while other tryptophan residues within electron transfer distance to W420 do not appear to be required for light-evoked electrophysiological responses. Mutation of the dCRY tryptophan residue W342, more distant from the FAD interaction site, mimics the cry-null behavioral light response to constant light exposure. These data indicate that light-evoked dCRY electrical depolarization and clock resetting are mediated by distinct mechanisms
Non-Gaussian energy landscape of a simple model for strong network-forming liquids: accurate evaluation of the configurational entropy
We present a numerical study of the statistical properties of the potential
energy landscape of a simple model for strong network-forming liquids. The
model is a system of spherical particles interacting through a square well
potential, with an additional constraint that limits the maximum number of
bonds, , per particle. Extensive simulations have been carried out
as a function of temperature, packing fraction, and . The dynamics
of this model are characterized by Arrhenius temperature dependence of the
transport coefficients and by nearly exponential relaxation of dynamic
correlators, i.e. features defining strong glass-forming liquids. This model
has two important features: (i) landscape basins can be associated with bonding
patterns; (ii) the configurational volume of the basin can be evaluated in a
formally exact way, and numerically with arbitrary precision. These features
allow us to evaluate the number of different topologies the bonding pattern can
adopt. We find that the number of fully bonded configurations, i.e.
configurations in which all particles are bonded to neighbors, is
extensive, suggesting that the configurational entropy of the low temperature
fluid is finite. We also evaluate the energy dependence of the configurational
entropy close to the fully bonded state, and show that it follows a logarithmic
functional form, differently from the quadratic dependence characterizing
fragile liquids. We suggest that the presence of a discrete energy scale,
provided by the particle bonds, and the intrinsic degeneracy of fully bonded
disordered networks differentiates strong from fragile behavior.Comment: Final version. Journal of Chemical Physics 124, 204509 (2006
Accurate Ritz wavelengths of parity-forbidden [Fe II], [Ti II] and [Cr II] infrared lines of astrophysical interest
With new astronomical infrared spectrographs the demands of accurate atomic
data in the infrared have increased. In this region there is a large amount of
parity-forbidden lines, which are of importance in diagnostics of low-density
astrophysical plasmas. We present improved, experimentally determined, energy
levels for the lowest even LS terms of Fe II, Ti II and Cr II, along with
accurate Ritz wavelengths for parity-forbidden transitions between and within
these terms. Spectra of Fe II, Ti II and Cr II have been produced in a hollow
cathode discharge lamp and acquired using high-resolution Fourier Transform
(FT) spectrometry. The energy levels have been determined by using observed
allowed ultraviolet transitions connecting the even terms with upper odd terms.
Ritz wavelengths of parity-forbidden lines have then been determined. Energy
levels of the four lowest Fe II terms (aD, aF, aD and
aP) have been determined, resulting in 97 different parity-forbidden
transitions with wavelengths between 0.74 and 87 micron. For Ti II the energy
levels of the two lowest terms (aF and bF) have been determined,
resulting in 24 different parity-forbidden transitions with wavelengths between
8.9 and 130 micron. Also for Cr II the energy levels of the two lowest terms
(aS and aD) have been determined, in this case resulting in 12
different parity-forbidden transitions with wavelengths between 0.80 and 140
micron.Comment: Accepted for publication in A&A, 13 pages, 6 figures, 9 table
Investigation of the relation between local diffusivity and local inherent structures in the Kob-Andersen Lennard-Jones model
We analyze one thousand independent equilibrium trajectories of a system of
155 Lennard Jones particles to separate in a model-free approach the role of
temperature and the role of the explored potential energy landscape basin depth
in the particle dynamics. We show that the diffusion coefficient can be
estimated as a sum over over contributions of the sampled basins, establishing
a connection between thermodynamics and dynamics in the potential energy
landscape framework. We provide evidence that the observed non-linearity in the
relation between local diffusion and basin depth is responsible for the
peculiar dynamic behavior observed in supercooled states and provide an
interpretation for the presence of dynamic heterogeneities.Comment: minor text changes, references adde
- …
