15 research outputs found

    Traumatic Brain Injury Service, Walter Reed National Military Medical Center 4. National Intrepid Center of Excellence, Walter Reed National Military Medical Center 5. National Institute of Nursing Research , National Institutes of Health 6. RTI Internati

    Get PDF
    Abstract Traumatic brain injury, depression and posttraumatic stress disorder (PTSD) are neurocognitive syndromes often associated with impairment of physical and mental health, as well as functional status. These syndromes are also frequent in military service members (SMs) after combat, although their presentation is often delayed until months after their return. The objective of this prospective cohort study was the identification of independent predictors of neurocognitive syndromes upon return from deployment could facilitate early intervention to prevent disability. We completed a comprehensive baseline assessment, followed by serial evaluations at three, six, and 12 months, to assess for new-onset PTSD, depression, or postconcussive syndrome (PCS) in order to identify baseline factors most strongly associated with subsequent neurocognitive syndromes. On serial follow-up, seven participants developed at least one neurocognitive syndrome: five with PTSD, one with depression and PTSD, and one with PCS. On univariate analysis, 60 items were associated with syndrome development at p < 0.15. Decision trees and ensemble tree multivariate models yielded four common independent predictors of PTSD: right superior longitudinal fasciculus tract volume on MRI; resting state connectivity between the right amygdala and left superior temporal gyrus (BA41/42) on functional MRI; and single nucleotide polymorphisms in the genes coding for myelin basic protein as well as brain-derived neurotrophic factor. Our findings require follow-up studies with greater sample size and suggest that neuroimaging and molecular biomarkers may help distinguish those at high risk for post-deployment neurocognitive syndromes

    Traumatic Brain Injury Service, Walter Reed National Military Medical Center 4. National Intrepid Center of Excellence, Walter Reed National Military Medical Center 5. National Institute of Nursing Research , National Institutes of Health 6. RTI Internati

    Get PDF
    Abstract Traumatic brain injury, depression and posttraumatic stress disorder (PTSD) are neurocognitive syndromes often associated with impairment of physical and mental health, as well as functional status. These syndromes are also frequent in military service members (SMs) after combat, although their presentation is often delayed until months after their return. The objective of this prospective cohort study was the identification of independent predictors of neurocognitive syndromes upon return from deployment could facilitate early intervention to prevent disability. We completed a comprehensive baseline assessment, followed by serial evaluations at three, six, and 12 months, to assess for new-onset PTSD, depression, or postconcussive syndrome (PCS) in order to identify baseline factors most strongly associated with subsequent neurocognitive syndromes. On serial follow-up, seven participants developed at least one neurocognitive syndrome: five with PTSD, one with depression and PTSD, and one with PCS. On univariate analysis, 60 items were associated with syndrome development at p < 0.15. Decision trees and ensemble tree multivariate models yielded four common independent predictors of PTSD: right superior longitudinal fasciculus tract volume on MRI; resting state connectivity between the right amygdala and left superior temporal gyrus (BA41/42) on functional MRI; and single nucleotide polymorphisms in the genes coding for myelin basic protein as well as brain-derived neurotrophic factor. Our findings require follow-up studies with greater sample size and suggest that neuroimaging and molecular biomarkers may help distinguish those at high risk for post-deployment neurocognitive syndromes

    Fouling of low-pressure membranes during drinking water treatment: effect of NOM components and biofiltration pretreatment

    Full text link
    Fouling is a major challenge for low-pressure membrane drinking water treatment systems. Previous research has demonstrated that under the right conditions, biofiltration is an effective method to reduce fouling of low-pressure polymeric membranes. This study provides additional insight into the effect of biofiltration as a pretreatment for fouling reduction by using river water with different raw water quality characteristics than has been examined in previous studies. Two parallel pilot-scale dual media (sand/anthracite) biological filters were operated continuously over a period of 14 months. Liquid chromatography–organic carbon detection analysis confirmed that the parallel biofilters performed similarly with both averaging on 21% biopolymer removal. Raw and treated water biopolymer concentrations were correlated, with increased absolute removals occurring at higher raw water concentrations. Ultrafiltration (UF) membrane fouling experiments showed substantial improvement in performance following biofiltration pretreatment by reducing hydraulically irreversible and reversible fouling rates by 14–68% and 8–55%, respectively. The results also reaffirm the importance of biopolymers at concentrations as low as ∼0.1 mg/L on irreversible and reversible UF membrane fouling and a minimal impact of humic substances.</jats:p
    corecore