676 research outputs found
The Hydrogen Epoch of Reionization Array Dish I: Beam Pattern Measurements and Science Implications
The Hydrogen Epoch of Reionization Array (HERA) is a radio interferometer
aiming to detect the power spectrum of 21 cm fluctuations from neutral hydrogen
from the Epoch of Reionization (EOR). Drawing on lessons from the Murchison
Widefield Array (MWA) and the Precision Array for Probing the Epoch of
Reionization (PAPER), HERA is a hexagonal array of large (14 m diameter) dishes
with suspended dipole feeds. Not only does the dish determine overall
sensitivity, it affects the observed frequency structure of foregrounds in the
interferometer. This is the first of a series of four papers characterizing the
frequency and angular response of the dish with simulations and measurements.
We focus in this paper on the angular response (i.e., power pattern), which
sets the relative weighting between sky regions of high and low delay, and
thus, apparent source frequency structure. We measure the angular response at
137 MHz using the ORBCOMM beam mapping system of Neben et al. We measure a
collecting area of 93 m^2 in the optimal dish/feed configuration, implying
HERA-320 should detect the EOR power spectrum at z~9 with a signal-to-noise
ratio of 12.7 using a foreground avoidance approach with a single season of
observations, and 74.3 using a foreground subtraction approach. Lastly we study
the impact of these beam measurements on the distribution of foregrounds in
Fourier space.Comment: 13 pages, 9 figures. Replaced to match accepted ApJ versio
The Hydrogen Epoch of Reionization Array Dish II: Characterization of Spectral Structure with Electromagnetic Simulations and its science Implications
We use time-domain electromagnetic simulations to determine the spectral
characteristics of the Hydrogen Epoch of Reionization Arrays (HERA) antenna.
These simulations are part of a multi-faceted campaign to determine the
effectiveness of the dish's design for obtaining a detection of redshifted 21
cm emission from the epoch of reionization. Our simulations show the existence
of reflections between HERA's suspended feed and its parabolic dish reflector
that fall below -40 dB at 150 ns and, for reasonable impedance matches, have a
negligible impact on HERA's ability to constrain EoR parameters. It follows
that despite the reflections they introduce, dishes are effective for
increasing the sensitivity of EoR experiments at relatively low cost. We find
that electromagnetic resonances in the HERA feed's cylindrical skirt, which is
intended to reduce cross coupling and beam ellipticity, introduces significant
power at large delays ( dB at 200 ns) which can lead to some loss of
measurable Fourier modes and a modest reduction in sensitivity. Even in the
presence of this structure, we find that the spectral response of the antenna
is sufficiently smooth for delay filtering to contain foreground emission at
line-of-sight wave numbers below Mpc, in
the region where the current PAPER experiment operates. Incorporating these
results into a Fisher Matrix analysis, we find that the spectral structure
observed in our simulations has only a small effect on the tight constraints
HERA can achieve on parameters associated with the astrophysics of
reionization.Comment: Accepted to ApJ, 18 pages, 17 Figures. Replacement matches accepted
manuscrip
WSClean : an implementation of a fast, generic wide-field imager for radio astronomy
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society. © 2014 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.Astronomical widefield imaging of interferometric radio data is computationally expensive, especially for the large data volumes created by modern non-coplanar many-element arrays. We present a new widefield interferometric imager that uses the w-stacking algorithm and can make use of the w-snapshot algorithm. The performance dependencies of CASA's w-projection and our new imager are analysed and analytical functions are derived that describe the required computing cost for both imagers. On data from the Murchison Widefield Array, we find our new method to be an order of magnitude faster than w-projection, as well as being capable of full-sky imaging at full resolution and with correct polarisation correction. We predict the computing costs for several other arrays and estimate that our imager is a factor of 2-12 faster, depending on the array configuration. We estimate the computing cost for imaging the low-frequency Square-Kilometre Array observations to be 60 PetaFLOPS with current techniques. We find that combining w-stacking with the w-snapshot algorithm does not significantly improve computing requirements over pure w-stacking. The source code of our new imager is publicly released.Peer reviewedFinal Published versio
Hydrogen Epoch of Reionization Array (HERA)
The Hydrogen Epoch of Reionization Array (HERA) is a staged experiment to
measure 21 cm emission from the primordial intergalactic medium (IGM)
throughout cosmic reionization (), and to explore earlier epochs of our
Cosmic Dawn (). During these epochs, early stars and black holes
heated and ionized the IGM, introducing fluctuations in 21 cm emission. HERA is
designed to characterize the evolution of the 21 cm power spectrum to constrain
the timing and morphology of reionization, the properties of the first
galaxies, the evolution of large-scale structure, and the early sources of
heating. The full HERA instrument will be a 350-element interferometer in South
Africa consisting of 14-m parabolic dishes observing from 50 to 250 MHz.
Currently, 19 dishes have been deployed on site and the next 18 are under
construction. HERA has been designated as an SKA Precursor instrument.
In this paper, we summarize HERA's scientific context and provide forecasts
for its key science results. After reviewing the current state of the art in
foreground mitigation, we use the delay-spectrum technique to motivate
high-level performance requirements for the HERA instrument. Next, we present
the HERA instrument design, along with the subsystem specifications that ensure
that HERA meets its performance requirements. Finally, we summarize the
schedule and status of the project. We conclude by suggesting that, given the
realities of foreground contamination, current-generation 21 cm instruments are
approaching their sensitivity limits. HERA is designed to bring both the
sensitivity and the precision to deliver its primary science on the basis of
proven foreground filtering techniques, while developing new subtraction
techniques to unlock new capabilities. The result will be a major step toward
realizing the widely recognized scientific potential of 21 cm cosmology.Comment: 26 pages, 24 figures, 2 table
Mapping our Universe in 3D with MITEoR
Mapping our universe in 3D by imaging the redshifted 21 cm line from neutral
hydrogen has the potential to overtake the cosmic microwave background as our
most powerful cosmological probe, because it can map a much larger volume of
our Universe, shedding new light on the epoch of reionization, inflation, dark
matter, dark energy, and neutrino masses. We report on MITEoR, a pathfinder
low-frequency radio interferometer whose goal is to test technologies that
greatly reduce the cost of such 3D mapping for a given sensitivity. MITEoR
accomplishes this by using massive baseline redundancy both to enable automated
precision calibration and to cut the correlator cost scaling from N^2 to NlogN,
where N is the number of antennas. The success of MITEoR with its 64
dual-polarization elements bodes well for the more ambitious HERA project,
which would incorporate many identical or similar technologies using an order
of magnitude more antennas, each with dramatically larger collecting area.Comment: To be published in proceedings of 2013 IEEE International Symposium
on Phased Array Systems & Technolog
- …
