67 research outputs found

    Reduction of the size of datasets by using evolutionary feature selection: the case of noise in a modern city

    Get PDF
    Smart city initiatives have emerged to mitigate the negative effects of a very fast growth of urban areas. Most of the population in our cities are exposed to high levels of noise that generate discomfort and different health problems. These issues may be mitigated by applying different smart cities solutions, some of them require high accurate noise information to provide the best quality of serve possible. In this study, we have designed a machine learning approach based on genetic algorithms to analyze noise data captured in the university campus. This method reduces the amount of data required to classify the noise by addressing a feature selection optimization problem. The experimental results have shown that our approach improved the accuracy in 20% (achieving an accuracy of 87% with a reduction of up to 85% on the original dataset).Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. This research has been partially funded by the Spanish MINECO and FEDER projects TIN2016-81766-REDT (http://cirti.es), and TIN2017-88213-R (http://6city.lcc.uma.es)

    Meta-heuristically seeded genetic algorithm for independent job scheduling in grid computing

    Get PDF
    Grid computing is an infrastructure which connects geographically distributed computers owned by various organizations allowing their resources, such as computational power and storage capabilities, to be shared, selected, and aggregated. Job scheduling problem is one of the most difficult tasks in grid computing systems. To solve this problem efficiently, new methods are required. In this paper, a seeded genetic algorithm is proposed which uses a meta-heuristic algorithm to generate its initial population. To evaluate the performance of the proposed method in terms of minimizing the makespan, the Expected Time to Compute (ETC) simulation model is used to carry out a number of experiments. The results show that the proposed algorithm performs better than other selected techniques

    A semi-Automatic Approach for Parallel Problem Solving using the Multi-BSP Model

    Full text link

    Data analysis approach for characterizing residential energy consumption based on statistics of household appliances ownership

    No full text

    Affinity multiprocessor scheduling considering communications and synchronizations using a Multiobjective Iterated Local Search algorithm

    No full text
    corecore