7,856 research outputs found
The structure of flame filaments in chaotic flows
The structure of flame filaments resulting from chaotic mixing within a
combustion reaction is considered. The transverse profile of the filaments is
investigated numerically and analytically based on a one-dimensional model that
represents the effect of stirring as a convergent flow. The dependence of the
steady solutions on the Damkohler number and Lewis number is treated in detail.
It is found that, below a critical Damkohler number Da(crit), the flame is
quenched by the flow. The quenching transition appears as a result of a
saddle-node bifurcation where the stable steady filament solution collides with
an unstable one. The shape of the steady solutions for the concentration and
temperature profiles changes with the Lewis number and the value of Da(crit)
increases monotonically with the Lewis number. Properties of the solutions are
studied analytically in the limit of large Damkohler number and for small and
large Lewis number.Comment: 17 pages, 13 figures, to be published in Physica
Electromagnetic corrections in the anomaly sector
Chiral perturbation theory in the anomaly sector for is extended to
include dynamical photons, thereby allowing a complete treatment of isospin
breaking. A minimal set of independent chiral lagrangian terms is determined
and the divergence structure is worked out. There are contributions from
irreducible and also from reducible one-loop graphs, a feature of ChPT at order
larger than four. The generating functional is non-anomalous at order ,
but not necessarily at higher order in . Practical applications to
and to the amplitudes are considered. In
the latter case, a complete discussion of the corrections beyond current
algebra is presented including quark mass as well as electromagnetic effects.Comment: 26 pages, 3 figure
High-resolution absorption spectroscopy of the OH 2Pi 3/2 ground state line
The chemical composition of the interstellar medium is determined by gas
phase chemistry, assisted by grain surface reactions, and by shock chemistry.
The aim of this study is to measure the abundance of the hydroxyl radical (OH)
in diffuse spiral arm clouds as a contribution to our understanding of the
underlying network of chemical reactions. Owing to their high critical density,
the ground states of light hydrides provide a tool to directly estimate column
densities by means of absorption spectroscopy against bright background
sources. We observed onboard the SOFIA observatory the 2Pi3/2, J = 5/2 3/2 2.5
THz line of ground-state OH in the diffuse clouds of the Carina-Sagittarius
spiral arm. OH column densities in the spiral arm clouds along the sightlines
to W49N, W51 and G34.26+0.15 were found to be of the order of 10^14 cm^-2,
which corresponds to a fractional abundance of 10^-7 to 10^-8, which is
comparable to that of H_2O. The absorption spectra of both species have similar
velocity components, and the ratio of the derived H_2O to OH column densities
ranges from 0.3 to 1.0. In W49N we also detected the corresponding line of
^18OH
ALMA data suggest the presence of a spiral structure in the inner wind of CW Leo
(abbreviated) We aim to study the inner wind of the well-known AGB star CW
Leo. Different diagnostics probing different geometrical scales have pointed
toward a non-homogeneous mass-loss process: dust clumps are observed at
milli-arcsec scale, a bipolar structure is seen at arcsecond-scale and
multi-concentric shells are detected beyond 1". We present the first ALMA Cycle
0 band 9 data around 650 GHz. The full-resolution data have a spatial
resolution of 0".42x0".24, allowing us to study the morpho-kinematical
structure within ~6". Results: We have detected 25 molecular lines. The
emission of all but one line is spatially resolved. The dust and molecular
lines are centered around the continuum peak position. The dust emission has an
asymmetric distribution with a central peak flux density of ~2 Jy. The
molecular emission lines trace different regions in the wind acceleration
region and suggest that the wind velocity increases rapidly from about 5 R*
almost reaching the terminal velocity at ~11 R*. The channel maps for the
brighter lines show a complex structure; specifically for the 13CO J=6-5 line
different arcs are detected within the first few arcseconds. The curved
structure present in the PV map of the 13CO J=6-5 line can be explained by a
spiral structure in the inner wind, probably induced by a binary companion.
From modeling the ALMA data, we deduce that the potential orbital axis for the
binary system lies at a position angle of ~10-20 deg to the North-East and that
the spiral structure is seen almost edge-on. We infer an orbital period of 55
yr and a binary separation of 25 au (or ~8.2 R*). We tentatively estimate that
the companion is an unevolved low-mass main-sequence star. The ALMA data hence
provide us for the first time with the crucial kinematical link between the
dust clumps seen at milli-arcsecond scale and the almost concentric arcs seen
at arcsecond scale.Comment: 22 pages, 18 Figures, Astronomy & Astrophysic
Synchronization and oscillator death in oscillatory media with stirring
The effect of stirring in an inhomogeneous oscillatory medium is
investigated. We show that the stirring rate can control the macroscopic
behavior of the system producing collective oscillations (synchronization) or
complete quenching of the oscillations (oscillator death). We interpret the
homogenization rate due to mixing as a measure of global coupling and compare
the phase diagrams of stirred oscillatory media and of populations of globally
coupled oscillators.Comment: to appear in Phys. Rev. Let
Can Physically Restrained Nursing‐Home Residents Be Untied Safely? Intervention and Evaluation Design
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111092/1/j.1532-5415.1995.tb07403.x.pd
Hydrogen Fluoride in High-Mass Star-forming Regions
Hydrogen fluoride has been established to be an excellent tracer of molecular
hydrogen in diffuse clouds. In denser environments, however, the HF abundance
has been shown to be approximately two orders of magnitude lower. We present
Herschel/HIFI observations of HF J=1-0 toward two high-mass star formation
sites, NGC6334 I and AFGL 2591. In NGC6334 I the HF line is seen in absorption
in foreground clouds and the source itself, while in AFGL 2591 HF is partially
in emission. We find an HF abundance with respect to H2 of 1.5e-8 in the
diffuse foreground clouds, whereas in the denser parts of NGC6334 I, we derive
a lower limit on the HF abundance of 5e-10. Lower HF abundances in dense clouds
are most likely caused by freeze out of HF molecules onto dust grains in
high-density gas. In AFGL 2591, the view of the hot core is obstructed by
absorption in the massive outflow, in which HF is also very abundant 3.6e-8)
due to the desorption by sputtering. These observations provide further
evidence that the chemistry of interstellar fluorine is controlled by freeze
out onto gas grains.Comment: accepted in Ap
Arterial Oxygen Tension in Relation to Age in Hospital Subjects
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111097/1/j.1532-5415.1973.tb00840.x.pd
Mapping water in protostellar outflows with Herschel: PACS and HIFI observations of L1448-C
We investigate on the spatial and velocity distribution of H2O along the
L1448 outflow, its relationship with other tracers, and its abundance
variations, using maps of the o-H2O 1_{10}-1_{01} and 2_{12}-1_{01} transitions
taken with the Herschel-HIFI and PACS instruments, respectively. Water emission
appears clumpy, with individual peaks corresponding to shock spots along the
outflow. The bulk of the 557 GHz line is confined to radial velocities in the
range \pm 10-50 km/s but extended emission associated with the L1448-C extreme
high velocity (EHV) jet is also detected. The H2O 1_{10}-1_{01}/CO(3-2) ratio
shows strong variations as a function of velocity that likely reflect different
and changing physical conditions in the gas responsible for the emissions from
the two species. In the EHV jet, a low H2O/SiO abundance ratio is inferred,
that could indicate molecular formation from dust free gas directly ejected
from the proto-stellar wind. We derive averaged Tkin and n(H2) values of about
300-500 K and 5 10^6 cm-3 respectively, while a water abundance with respect to
H2 of the order of 0.5-1 10^{-6} along the outflow is estimated. The fairly
constant conditions found all along the outflow implies that evolutionary
effects on the timescales of outflow propagation do not play a major role in
the H2O chemistry. The results of our analysis show that the bulk of the
observed H2O lines comes from post-shocked regions where the gas, after being
heated to high temperatures, has been already cooled down to a few hundred K.
The relatively low derived abundances, however, call for some mechanism to
diminish the H2O gas in the post-shock region. Among the possible scenarios, we
favor H2O photodissociation, which requires the superposition of a low velocity
non-dissociative shock with a fast dissociative shock able to produce a FUV
field of sufficient strength.Comment: 16 pages, 13 figures, accepted for publication on Astronomy &
Astrophysic
Fluid invasion of an unsaturated leaky porous layer
We study the flow and leakage of gravity currents injected into an unsaturated (dry), vertically confined porous layer containing a localized outlet or leakage point in its lower boundary. The leakage is driven by the combination of the gravitational hydrostatic pressure head of the current above the outlet and the pressure build-up from driving fluid downstream of the leakage point. Model solutions illustrate transitions towards one of three long-term regimes of flow, depending on the value of a dimensionless parameter D, which, when positive, represents the ratio of the hydrostatic head above the outlet for which gravity-driven leakage balances the input flux, to the depth of the medium. If D⩽0, the input flux is insufficient to accumulate any fluid above the outlet and fluid migrates directly through the leakage pathway. If 0<D⩽1, some fluid propagates downstream of the outlet but retains a free surface above it. The leakage rate subsequently approaches the input flux asymptotically but much more gradually than if D⩽0. If D>1, the current fills the entire depth of the medium above the outlet. Confinement then fixes gravity-driven leakage at a constant rate but introduces a new force driving leakage in the form of the pressure build-up associated with mobilizing fluid downstream of the outlet. This causes the leakage rate to approach the injection rate faster than would occur in the absence of the confining boundary. This conclusion is in complete contrast to fluid-saturated media, where confinement can potentially reduce long-term leakage by orders of magnitude. Data from a new series of laboratory experiments confirm these predictions
- …
