15 research outputs found
PKD is a kinase of Vps34 that mediates ROS-induced autophagy downstream of DAPk
Autophagy, a process in which cellular components are engulfed and degraded within double-membrane vesicles termed autophagosomes, has an important role in the response to oxidative damage. Here we identify a novel cascade of phosphorylation events, involving a network of protein and lipid kinases, as crucial components of the signaling pathways that regulate the induction of autophagy under oxidative stress. Our findings show that both the tumor-suppressor death-associated protein kinase (DAPk) and protein kinase D (PKD), which we previously showed to be phosphorylated and consequently activated by DAPk, mediate the induction of autophagy in response to oxidative damage. Furthermore, we map the position of PKD within the autophagic network to Vps34, a lipid kinase whose function is indispensable for autophagy, and demonstrate that PKD is found in the same molecular complex with Vps34. PKD phosphorylates Vps34, leading to activation of Vps34, phosphatydilinositol-3-phosphate (PI(3)P) formation, and autophagosome formation. Consistent with its identification as a novel inducer of the autophagic machinery, we show that PKD is recruited to LC3-positive autophagosomes, where it localizes specifically to the autophagosomal membranes. Taken together, our results describe PKD as a novel Vps34 kinase that functions as an effecter of autophagy under oxidative stress
Sphingomyelin Synthases Regulate Protein Trafficking and Secretion
Sphingomyelin synthases (SMS1 and 2) represent a class of enzymes that transfer a phosphocholine moiety from phosphatidylcholine onto ceramide thus producing sphingomyelin and diacylglycerol (DAG). SMS1 localizes at the Golgi while SMS2 localizes both at the Golgi and the plasma membrane. Previous studies from our laboratory showed that modulation of SMS1 and, to a lesser extent, of SMS2 affected the formation of DAG at the Golgi apparatus. As a consequence, down-regulation of SMS1 and SMS2 reduced the localization of the DAG-binding protein, protein kinase D (PKD), to the Golgi. Since PKD recruitment to the Golgi has been implicated in cellular secretion through the trans golgi network (TGN), the effect of down-regulation of SMSs on TGN-to-plasma membrane trafficking was studied. Down regulation of either SMS1 or SMS2 significantly retarded trafficking of the reporter protein vesicular stomatitis virus G protein tagged with GFP (VSVG-GFP) from the TGN to the cell surface. Inhibition of SMSs also induced tubular protrusions from the trans Golgi network reminiscent of inhibited TGN membrane fission. Since a recent study demonstrated the requirement of PKD activity for insulin secretion in beta cells, we tested the function of SMS in this model. Inhibition of SMS significantly reduced insulin secretion in rat INS-1 cells. Taken together these results provide the first direct evidence that both enzymes (SMS1 and 2) are capable of regulating TGN-mediated protein trafficking and secretion, functions that are compatible with PKD being a down-stream target for SMSs in the Golgi
A computational model of PKD and CERT interactions at the trans-Golgi network of mammalian cells
Protein kinase D interacts with neuronal nitric oxide synthase and phosphorylates the activatory residue serine1412
Neuronal Nitric Oxide Synthase (nNOS) is the biosynthetic enzyme responsible for nitric oxide (·NO) production in muscles and in the nervous system. This constitutive enzyme, unlike its endothelial and inducible counterparts, presents an N-terminal PDZ domain known to display a preference for PDZ-binding motifs bearing acidic residues at -2 position. In a previous work, we discovered that the C-terminal end of two members of protein kinase D family (PKD1 and PKD2) constitutes a PDZ-ligand. PKD1 has been shown to regulate multiple cellular processes and, when activated, becomes autophosphorylated at Ser 916, a residue located at -2 position of its PDZ-binding motif. Since nNOS and PKD are spatially enriched in postsynaptic densities and dendrites, the main objective of our study was to determine whether PKD1 activation could result in a direct interaction with nNOS through their respective PDZ-ligand and PDZ domain, and to analyze the functional consequences of this interaction. Herein we demonstrate that PKD1 associates with nNOS in neurons and in transfected cells, and that kinase activation enhances PKD1-nNOS co-immunoprecipitation and subcellular colocalization. However, transfection of mammalian cells with PKD1 mutants and yeast two hybrid assays showed that the association of these two enzymes does not depend on PKD1 PDZ-ligand but its pleckstrin homology domain. Furthermore, this domain was able to pull-down nNOS from brain extracts and bind to purified nNOS, indicating that it mediates a direct PKD1-nNOS interaction. In addition, using mass spectrometry we demonstrate that PKD1 specifically phosphorylates nNOS in the activatory residue Ser 1412, and that this phosphorylation increases nNOS activity and ·NO production in living cells. In conclusion, these novel findings reveal a crucial role of PKD1 in the regulation of nNOS activation and synthesis of ·NO, a mediator involved in physiological neuronal signaling or neurotoxicity under pathological conditions such as ischemic stroke or neurodegeneration.This work was supported by the Ministerio de Economía y Competitividad [SAF2011-26233 to T.I., BFU2009-10442 and BFU2012-37934 to I.R-C.]; Comunidad de Madrid [S2010/BMD-2331-Neurodegmodels-CM to T.I.]; and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas – CIBERNED, Instituto de Salud Carlos III, to T.I. Postdoctoral fellows L.S-R. and L.G-G. have been funded by research contracts from CIBERNED; Clara Aicart-Ramos is a recipient of a FPU predoctoral fellowship from Ministerio de Economía y Competitividad.Peer Reviewe
Nonlinear visualisation and pixel-based alignment of 2D electrophoresis images
AbstractData analysis at the pixel level instead of the protein spot level in the context of experiments generating two-dimensional gel electrophoresis (2DE) images requires a complete workflow description starting with an image analysis part (preprocessing and alignment), and ending with a statistical analysis. Here we describe the image analysis part of the workflow focusing on: 1) A nonlinear image intensity transformation enhancing the weaker protein signals. 2) A pixel-based 2DE image alignment method, based on a modified version of the optical flow principle. Image enhancement and alignment according to these principles was found to improve data quality in the sense that it was possible to detect a larger portion of small protein spots across 2DE gels without loss of information concerning the larger spots. Furthermore with the presented method, the volume of protein spots after alignment is kept as before alignment
Activated Platelets Induce Endothelial Cell Activation via an Interleukin-1β Pathway in Systemic Lupus Erythematosus
Objective—
Systemic lupus erythematosus (SLE) is associated with the premature development of cardiovascular disease. The platelet–endothelium interaction is important in the pathogenesis of cardiovascular disease. In this study, we investigated the platelet phenotype from patients with SLE and matched controls, and their effect on endothelial cells.
Approach and Results—
Platelet aggregability was measured in 54 SLE subjects off antiplatelet therapy (mean age 40.1±12.8 years; 82% female; 37% white) with age- and sex-matched controls. Platelets were coincubated with human umbilical vein endothelial cells (HUVECs) and changes to gene expression assessed by an RNA array and quantitative reverse transcription polymerase chain reaction. SLE disease activity index ranged from 0 to 22 (mean 5.1±3.9). Compared with controls, patients with SLE had significantly increased monocyte and leukocyte–platelet aggregation and platelet aggregation in response to submaximal agonist stimulation. An agnostic microarray of HUVECs cocultured with SLE platelets found a platelet-mediated effect on endothelial gene pathways involved in cell activation. Sera from SLE versus control subjects significantly increased (1) activation of control platelets; (2) platelet adhesion to HUVECs; (3) platelet-induced HUVEC gene expression of interleukin-8, and intercellular adhesion molecule 1; and (4) proinflammatory gene expression in HUVECs, mediated by interleukin-1β–dependent pathway. Incubation of SLE-activated platelets with an interleukin-1β–neutralizing antibody or HUVECs pretreated with interleukin-1 receptor antibodies attenuated the platelet-mediated activation of endothelial cells.
Conclusions—
Platelet activity measurements and subsequent interleukin-1β–dependent activation of the endothelium are increased in subjects with SLE. Platelet–endothelial interactions may play a role in the pathogenesis of cardiovascular disease in patients with SLE.
</jats:sec
