2,102 research outputs found
A method of determining attitude from magnetometer data only
Presented here is a new algorithm to determine attitude using only magnetometer data under the following conditions: (1) internal torques are known and (2) external torques are negligible. Torque-free rotation of a spacecraft in thruster firing acquisition phase and its magnetic despin in the B-dot mode give typical examples of such situations. A simple analytical formula has been derived in the limiting case of a spacecraft rotating with constant angular velocity. The formula has been tested using low-frequency telemetry data for the Earth Radiation Budget Satellite (ERBS) under normal conditions. Observed small oscillation of body-fixed components of the angular velocity vector near their mean values result in relatively minor errors of approximately 5 degrees. More significant errors come from processing digital magnetometer data. Higher resolution of digitized magnetometer measurements would significantly improve the accuracy of this deterministic scheme. Tests of the general version of the developed algorithm for a free-rotating spacecraft and for the B-dot mode are in progress
Magnetotransport in the CeIrIn system: The influence of antiferromagnetic fluctuations
We present an overview of magnetotransport measurements on the heavy-fermion
superconductor CeIrIn. Sensitive measurements of the Hall effect and
magnetoresistance (MR) are used to elucidate the low temperature phase diagram
of this system. The normal-state magnetotransport is highly anomalous, and
experimental signatures of a pseudogap-like precursor state to
superconductivity as well as evidence for two distinct scattering times
governing the Hall effect and the MR are observed. Our observations point out
the influence of antiferromagnetic fluctuations on the magnetotransport in this
class of materials. The implications of these findings, both in the context of
unconventional superconductivity in heavy-fermion systems as well as in
relation to the high temperature superconducting cuprates are discussed
Large zero-field cooled exchange-bias in bulk Mn2PtGa
We report a large exchange-bias (EB) effect after zero-field cooling the new
tetragonal Heusler compound Mn2PtGa from the paramagnetic state. The
first-principle calculation and the magnetic measurements reveal that Mn2PtGa
orders ferrimagnetically with some ferromagnetic (FM) inclusions. We show that
ferrimagnetic (FI) ordering is essential to isothermally induce the exchange
anisotropy needed for the zero-field cooled (ZFC) EB during the virgin
magnetization process. The complex magnetic behavior at low temperatures is
characterized by the coexistence of a field induced irreversible magnetic
behavior and a spin-glass-like phase. The field induced irreversibility
originates from an unusual first-order FI to antiferromagnetic transition,
whereas, the spin-glass like state forms due to the existence of anti-site
disorder intrinsic to the material.Comment: 5 pages, 4 figures, supplementary material included in a separate
file; accepted for publication in PR
Pressure-induced change of the pairing symmetry in superconducting CeCu2Si2
Low-temperature (T) heat-capacity measurements under hydrostatic pressure of
up to p=2.1 GPa have been performed on single-crystalline CeCu2Si2. A broad
superconducting (SC) region exists in the T-p phase diagram. In the
low-pressure region antiferromagnetic spin fluctuations and in the
high-pressure region valence fluctuations had previously been proposed to
mediate Cooper pairing. We could identify these two distinct SC regions. We
found different thermodynamic properties of the SC phase in both regions,
supporting the proposal that different mechanisms might be implied in the
formation of superconductivity.Comment: 4 pages, 5 figure
Possible re-entrant superconductivity in EuFe2As2 under pressure
We studied the temperature-pressure phase diagram of EuFe2As2 by measurements
of the electrical resistivity. The antiferromagnetic spin-density-wave
transition at T_0 associated with the FeAs-layers is continuously suppressed
with increasing pressure, while the antiferromagnetic ordering temperature of
the Eu 2+ moments seems to be nearly pressure independent up to 2.6 GPa. Above
2 GPa a sharp drop of the resistivity, \rho(T), indicates the onset of
superconductivity at T_c \approx 29.5 K. Surprisingly, on further reducing the
temperature \rho(T) is increasing again and exhibiting a maximum caused by the
ordering of the Eu 2+ moments, a behavior which is reminiscent of re-entrant
superconductivity as it is observed in the ternary Chevrel phases or in the
rare-earth nickel borocarbides
A precursor state to unconventional superconductivity in CeIrIn
We present sensitive measurements of the Hall effect and magnetoresistance in
CeIrIn down to temperatures of 50 mK and magnetic fields up to 15 T. The
presence of a low temperature coherent Kondo state is established. Deviations
from Kohler's rule and a quadratic temperature dependence of the cotangent of
the Hall angle are reminiscent of properties observed in the high temperature
superconducting cuprates. The most striking observation pertains to the
presence of a \textit{precursor} state--characterized by a change in the Hall
mobility--that appears to precede the superconductivity in this material, in
similarity to the pseudogap in the cuprate high superconductors.Comment: 4 figure
Large Noncollinearity and Spin Reorientation in the Novel Mn2RhSn Heusler Magnet
Noncollinear magnets provide essential ingredients for the next generation
memory technology. It is a new prospect for the Heusler materials, already well
known due to the diverse range of other fundamental characteristics. Here, we
present a combined experimental and theoretical study of novel noncollinear
tetragonal Mn2RhSn Heusler material exhibiting unusually strong canting of its
magnetic sublattices. It undergoes a spin-reorientation transition, induced by
a temperature change and suppressed by an external magnetic field. Because of
the presence of Dzyaloshinskii-Moriya exchange and magnetic anisotropy, Mn2RhSn
is suggested to be a promising candidate for realizing the Skyrmion state in
the Heusler family
Superconductivity and Quantum Criticality in CeCoIn_5
Electrical resistivity measurements on a single crystal of the heavy-fermion
superconductor CeCoIn_5 at pressures to 4.2 GPa reveal a strong crossover in
transport properties near P^* \approx 1.6 GPa, where T_c is a maximum. The
temperature-pressure phase diagram constructed from these data provides a
natural connection to cuprate physics, including the possible existence of a
pseudogap.Comment: 4 pages, 4 figure
Thermopower and thermal conductivity in the Weyl semimetal NbP
The Weyl semimetal NbP exhibits an extremely large magnetoresistance (MR) and
an ultra-high mobility. The large MR originates from a combination of the
nearly perfect compensation between electron- and hole-type charge carriers and
the high mobility, which is relevant to the topological band structure. In this
work we report on temperature- and field-dependent thermopower and thermal
conductivity experiments on NbP. Additionally, we carried out complementary
heat capacity, magnetization, and electrical resistivity measurements. We found
a giant adiabatic magnetothermopower with a maximum of 800 V/K at 50 K in
a field of 9 T. Such large effects have been observed rarely in bulk materials.
We suggest that the origin of this effect might be related to the high
charge-carrier mobility. We further observe pronounced quantum oscillations in
both thermal conductivity and thermopower. The obtained frequencies compare
well with our heat capacity and magnetization data.Comment: 6 pages, 3 figure
Magnetism and superconductivity driven by identical 4 states in a heavy-fermion metal
The apparently inimical relationship between magnetism and superconductivity
has come under increasing scrutiny in a wide range of material classes, where
the free energy landscape conspires to bring them in close proximity to each
other. This is particularly the case when these phases microscopically
interpenetrate, though the manner in which this can be accomplished remains to
be fully comprehended. Here, we present combined measurements of elastic
neutron scattering, magnetotransport, and heat capacity on a prototypical heavy
fermion system, in which antiferromagnetism and superconductivity are observed.
Monitoring the response of these states to the presence of the other, as well
as to external thermal and magnetic perturbations, points to the possibility
that they emerge from different parts of the Fermi surface. This enables a
single 4 state to be both localized and itinerant, thus accounting for the
coexistence of magnetism and superconductivity.Comment: 4 pages, 4 figure
- …
